بایگانی برچسب‌ها: نرم افزار متن باز

به روز رسانی اوبونتو از نسخه های LTS به STS

توزیع اوبونتو، معمولا در دونسخه ارائه میشه. نسخه های «پشتیبانی طولانی مدت» یا همون LTS (مخفف Long Term Support ) که اگر اشتباه نکنم هر کدوم تا پنج سال، پشتیبانی دریافت میکنند. این پشتیبانی به معنای پشتیبانی از سمت کنونیکال (شرکت سازنده این توزیع)، دریافت آپدیت های امنیتی و همچنین به روز شدن مستندات توزیع است.

نسخه های STS که طبق روتین ارائه اوبونتو هر شش ماه یه بار میان، قبلا دو سال پشتیبانی می‌شدند ولی مثل این که الان این پشتیبانی کمتر شده و همون شش ماه (یا یک سال، دقیقا نمیدونم و یادم نیست) پشتیبانی رو دریافت میکنن. این نسخه ها به قول معروف «روی لبه تکنولوژی حرکت میکنند» و معمولا تکنولوژی های جدیدی رو در خودشون جای دادن.

هر کدوم از این نسخه ها، مزایای خودش رو داره. خیلی از افراد رو دیدم که با هر آپدیتی، سریعا سیستم عامل خودشون رو آپدیت میکنند و خیلی ها هم ترجیح میدند دو سال یک بار، نسخه های LTS رو آپدیت کنند و یا حتی کل پنج سالی که برای LTS ها پشتیبانی در نظر گرفته شده، روی اون بمونن. اما برگردیم به دسته اول!

فرض کنیم شما آخرین اوبونتوی LTS (در حال حاضر ۱۸.۰۴ ) رو نصب کردید و میخواهید به STS جدید (در حال حاضر ۱۹.۰۴) به‌روز رسانی کنید. برای این کار، نیاز به چند مرحله داریم. اول لازمه که update-manager رو نصب کنیم :

sudo apt install update-manager-core

و البته معمولا این بسته روی اوبونتو نصب شده. فقط در صورتی که نصب نباشه، این دستور نصبش میکنه. نصب هم باشه یا به شما میگه که آخرین نسخه رو نصب کردید یا به روز رسانی میکنه.

گام دوم، اینه که به آپدیت منیجر، بگیم که به جای lts در نسخه های normal برامون دنبال ریلیز جدید بگرده. فقط کافیه این فایل رو با یک ویرایشگر متن باز کنیم (البته ترجیحا ویرایشگرهای خط فرمان؛ چون دسترسی ریشه نیاز داریم) :

/etc/update-manager/release-upgrades

سپس در این فایل، شما احتمالا این خط رو می‌بینید :

Prompt=lts

با تغییر مقدار متغیر prompt به normal ، شما به آپدیت منیجر گفتید که در نسخه های STS به دنبال ریلیز جدید بگرده. بعد از این که عبارت lts رو با normal جایگزین کردید، کافیه فایل رو ذخیره کرده، ببندید و در ترمینال تایپ کنید :

do-release-upgrade

و جایی هم نیاز به پسورد داشته باشید، این دستور ازتون دریافتش خواهد کرد.

این راه حلی بود که خودم دقیقا استفاده کردم برای آپدیت به ۱۹.۰۴. نمیدونم قبلتر کسی در وب فارسی توضیحش داده یا نه، ولی خب امیدوارم که به کارتون بیاد 🙂

Share

نصب و راه اندازی KTechLab برای پروژه های الکترونیک

پروژه های الکترونیک، مثل طراحی مدار، مدارهای منطقی، الکترونیک دیجیتال و … ، همه معمولا توسط نرم افزار Proteus و در سیستم عامل ویندوز انجام میشن. پروتئوس نرم افزار کامل و جامعیه و همه چی هم داره. شما میتونید به سادگی یک پروژه میکروکنترلری در پروتئوس پیاده سازی و اجرا کنید و مطمئن باشید نتیجه‌ای که میگیرید، تا حد بسیار زیاد و قابل قبولی، شبیه نتیجه‌ایه که در پیاده‌سازی حقیقی از پروژه خواهید داشت.

اما مشکلی که اکثر کاربران لینوکس دارند، اینه که پروتئوس نسخه لینوکس نداره. اجرای اون روی واین هم زیاد چنگی به دل نمیزنه و گذشته از اون، همه هم سیستمی ندارند که ماشین مجازی رو تحمل و ساپورت کنه، پس نتیجتا اکثر افرادی که پروژه های الکترونیک انجام میدن، یک سیستم عامل ویندوز هم کنار لینوکسشون دارند. امروز تصمیم داشتم که یک پروژه‌ای رو آزمایش کنم و میخواستم ببینم که روی اوبونتو، چه ابزاری نصب دارم. طبق معمول به دنبال Logisim گشتم ولی فهمیدم که هنوز نسخه جدیدش رو دانلود نکردم. پس، گفتم بهتره سرچ کنم و به نتیجه مطلوب برسم.

در نتیجه جست و جو، به KTechLab رسیدم. گرچه اسمش برام آشنا بود ولی هیچوقت ازش استفاده نکرده بودم. گفتم که بهتره الان به دنبالش باشم و ازش کمی (حتی شده آزمایشی) استفاده کنم. شاید، نتیجه‌ای که خواستم رو گرفتم. خب، خوشبختانه این نرم افزار اون چیزایی که میخواستم رو داشت. این هم تصویری از محیطش :

و الان یک سوال پیش میاد :

چطور نصبش کنیم؟

من اسمش رو جست و جو کردم و به وبسایتش رسیدم (لینک) و بعد سورس کدش رو دانلود کردم. اما فهمیدم که برای نصبش نیاز به cmake دارم، پس اون رو نصب کردم :


کد   
sudo apt install cmake

و بعد از نصب این، کمی گشتم تا ببینم چه پیش‌نیازهایی داره، سپس اونا رو نصب کردم :


کد   
sudo apt install git kdelibs5-dev kdevplatform-dev qt4-dev-tools cmake libglib2.0-dev

بعد از نصب، فایل فشرده حاوی سورس کد رو از حالت فشرده درآوردم، درون پوشه سورس یک پوشه به اسم build ساختم و به ترتیب این سه دستور رو زدم :


کد   
cmake ..
make
sudo make install

و در آخر، دیدم که KTechLab به لیست نرم افزارهای نصب شده اضافه شده.

در آینده، در مورد این که این نرم افزار چطوره و کجاها به درد میخوره، بیشتر خواهم نوشت. امیدوارم این پست مفید واقع شده باشه، موفق باشید 🙂

Share

میکروکنترلرها، طراحی و پیاده سازی – ریلیز شد!

قریب به دو سال هست که دارم روی معماری کامپیوتر و پیاده سازی یک کامپیوتر ساده به شکل های مختلف، تحقیق میکنم. تابستان پارسال تصمیم گرفتم که تجربیاتم رو قدم به قدم مکتوب کنم و با دیگران به اشتراک بذارم. همینطور که مطالعه میکردم، شبیه سازی میکردم و به نتیجه ای می‌رسیدم، کم کم یادداشت میکردم و در زمان هایی که پیش می اومد، با یک قالب کلی و به زبان انگلیسی، به صورت سازمان یافته و دسته‌بندی شده درشون می‌آوردم.

سرفصل های کتاب :

فصل اول : میکروکنترل چیست؟
در این فصل کلیت یک میکروکنترلر و این که چه بخش هایی درونش به کار رفته، توضیح داده شده.

فصل دوم : چطور با کامپیوتر حرف بزنیم
در این بخش در مورد زبان های برنامه نویسی و مبناهای عددی و فضای ذخیره سازی دیتا صحبت شده.

فصل سوم : عملیات محاسباتی
در این فصل در مورد انجام عملیات ریاضی در مبنای دو صحبت شده.

فصل چهارم : عملیات منطقی
در این فصل در مورد جبر بول و نحوه انجام عملیات بولین صحبت شده.

فصل پنجم : مدارهای منطقی
اینجا، اومدیم و یه سری گیت های پایه رو بررسی کردیم. همینطور در مورد گیت های مادر صحبت کردیم.

فصل ششم : مدارهای ترکیبی
در این فصل، از ترکیب مدارهای فصل پنجم منطق های جدید ساختیم و چیزای جدید تر پیاده کردیم

فصل هفتم : نخستین کامپیوتر
در این فصل، هف اددر و فول اددر ساختیم، یه ماشین جمع ساده درست کردیم باهاش.

فصل هشتم : حافظه
اینجا رسیدیم به مدارهای ترتیبی و حافظه ای، در اینجا لچ S-R رو ساختیم، در مورد لچ Active High و Active Low توضیح دادیم.

فصل نهم : رجیستر فایل
اینجا چندین رجیستر رو چیدیم کنار هم و یک رجیستر فایل طراحی کردیم.

فصل دهم : معماری کامپیوتر
اینجا با کلیت معماری کامپیوتر و مفاهیم تئوری قضیه آشنا شدیم. چیزایی که لازمه برای یادگیری معماری بلد بود رو آوردیم اینجا.

فصل یازدهم : طراحی، ماشین جمع کننده پیشرفته
اینجا به کامپیوتر ساده فصل هفتم، که فقط جمع میکرد رجیستر و بلاک حافظه ای اضافه میکنیم.

فصل دوازدهم : کامپیوتر (تئوری)
در اینجا به صورت تئوری و روی کاغذ کامپیوتر اصل کاری طراحی شده. تصمیم گیری شده که چه کارهایی انجام بده و «سازمان کامپیوتر» در این نقطه مشخص شده.

فصل سیزدهم : واحد محاسبه و منطق
در این فصل، واحد محاسبه و منطقی برای کامپیوتر خودمون طراحی کردیم، و در مورد Instruction Code ها تصمیم گیری کردیم.

فصل چهاردهم : ساختار برنامه
اینجا برای برنامه پذیر شدن کامپیوتر خودمون تصمیم گیری کردیم و ساختار برنامه ها در زبان ماشین رو تعیین کردیم.

فصل پانزدهم : میکروکنترلر
اینجا بخش های لازم رو کنار هم چیدیم و در نهایت رسیدیم به یه میکروکنترلر فوق العاده ساده.

فصل شانزدهم : برنامه نویسی و سیستم عامل
در اینجا نگاه اجمالی داشتیم به نوشتن برنامه و سیستم عامل برای کامپیوتر خودمون.

فصل هفدهم : نیمه تاریک ماه
در این قسمت، وارد مباحث دیجیتالی و پیاده سازی فیزیکی کامپیوتر شدیم. چیزایی که برای دانشجوهای سخت افزار آشناس ولی نرم افزاری ها یکم در شناختش مشکل دارن. به همین خاطر هم اسمش شده این.

برای دانلود PDF هم میتونید از این لینک استفاده کنید.

Share

پروژه گاه‌شمار

خب، من در گروه های تلگرامی این پیام رو میذاشتم :

دوستی مدتی پیش (که خیلی هم ازش نگذشته ) یک چالش رو بعنوان تمرین برنامه نویسی پیشنهاد داد، و اون هم نوشتن یک API بود برای دریافت ساعت و تاریخ.
من هم وارد این چالش شدم و یک API با روبی و سیناترا نوشتم، روی گیتهاب هم قرارش دادم ولی الان دپلویش کردم که اگر شما هم خواستید بتونید ازش استفاده کنید :
https://gahshomar-api.herokuapp.com/

خب، این هم پروژه ای بود که محسن بعنوان تمرین خواست که ما یه API بنویسیم، من هم این رو با Sinatra نوشتم و الان دپلوی شده و در دسترسه! امیدوارم ازش لذت ببرید 🙂

Share

بررسی معماری MIPS

خب، همونطور که داریم سلسله آموزش های ساخت کامپیوتر ساده در Logisim رو دنبال میکنیم، گفتم این وسط یه توضیحی هم در مورد معماری MIPS داشته باشیم. در واقع MIPS یکی از ساده ترین و کم دستور ترین معماری های ممکنه، و البته پیاده سازی دوبارش در نرم افزارهایی مثل Logisim بسیار ساده. میشه.

این یک ALU بسیار ساده بر اساس میپس هست (که البته یک بیتی پیاده شده) :

MIPS

در اینجا، برای تفریق مدار جداگانه ای در نظر نگرفته، بلکه مقدار B رو با یک، XOR کرده (هوشمندانه به نظر میرسه، نه؟) و از less هم برای مقایسه، از یک مالتی پلکسر ۸ به ۱ هم برای انتخاب عملیات استفاده شده (به جای استفاده از دیکدر و گیت های AND )، در کل میشه یک ساختار خیلی قشنگ براش قائل شد، البته بهتر از این هم میشد الگوریتم هایی مثل تفریق رو هم پیاده کرد (مثلا با استفاده از یه mux میشد انتخاب کرد که خود B نیازه یا نقیضش؟ و البته نیاز بود که cin هم حتما روشن شه که مکمل ۲ گرفته شه).

زبان ماشین این ALU هم خیلی سادس، به ازای مقدار ۰ ، عملیات AND ، به ازای ۱ عملیات OR ، به ازای ۲ عملیات XOR ، به ازای ۳ عملیات NOR ، به ازای ۴ عملیات ADD و به ازای ۵ عملیات مقایسه رو انجام میده (البته برای مقایسه هم میشه از XNOR استفاده کرد و تساوی رو سنجید).

امیدوارم که این مطلب به دردتون خورده باشه، همچنین میتونید این معماری رو پیاده کنید و نتیجش رو حتی روی برد بُرد بیارید 🙂 .

موفق باشید.

Share

ساخت یک کامپیوتر ساده در Logisim – قسمت دوم (مجموعه دستور العمل ها)

در قسمت قبلی، چالش رو مطرح کردیم که کامپیوتر هشت بیتی خودمون رو بسازیم. ببینیم چه مداراتی نیاز داریم؟!

خب ما دو ورودی هشت بیتی A و B رو خواهیم داشت، پس به این موارد نیاز داریم :

  1. مداری برای NOT کردن ورودی A
  2. مداری برای NOT کردن ورودی B
  3. مداری برای AND کردن هر دو ورودی
  4. مداری برای OR کردن هر دو ورودی
  5. مداری برای جمع کردن دو ورودی
  6. مداری برای تفریق دو ورودی

خب، چون ما از یک قطعه به اسم «دیکدر» برای انتخاب دستورات استفاده میکنیم، و دیکدرها هم یک ورودی با سایز n میگیرن، و خروجی اونها «دو به توان n» هست، و ما اینجا «مجموعه دستور العمل» یا Instruction Set مون دارای ۶ دستور هست، بهینه ترین حالت استفاده از یک دیکدر ۳ به ۸ هست. خب، با این حساب، باید کد عملیات ها یا Operation Code ها رو به این شکل تعریف کنیم :

Operation Code
NOT A 000
NOT B 001
AND A, B 010
OR A, B 011
ADD A , B 100
SUB A, B 101

خب الان ما میدونیم که کامپیوتر محترم باید چه دستوراتی رو اچرا کنه. در واقع، وقتی میگیم ۰ ، کامپیوتر اون رو به دیکدر میده و میفهمه که باید نقیض A رو بهمون بده. وقتی ۱ رو فراخوانی میکنیم، باید نقیض B بهمون داده شه، وقتی میگیم ۵ در واقع مقدار B رو از A کم میکنیم و … . با توجه به این که الان، ما یک دیکدر ۳ به ۸ در مدار «واحد محاسبه و منطق» داریم، میتونیم ۴ دستور العمل دیگه هم بهش اضافه کنیم (با شما 🙂 ). در قسمت بعدی این آموزش، میرسیم به این که ورودی ها و خروجی ها رو چطوری مدیریت کنیم. بعدش هم در مورد ساختار کلی ALU صحبت میشه و بعد از چند پست دیگه، یک ALU کامل با هم خواهیم داشت. پس فعلا در مورد بلاهایی که سر ۸ بیت ورودی میشه آورد فکر کنید و شاد باشید 🙂

Share

ساخت یک کامپیوتر ساده در Logisim – قسمت اول

بالاخره یه سری پست جدید تصمیم گرفتم بنویسم، و خب این سری قراره که مرحله به مرحله پیش بریم تا یک کامپیوتر ساده بسازیم. تنها دانشی که شما برای این سری از پست ها نیاز دارید :

۱. دونستن کمی مدار منطقی (که قبلا در وبلاگ راجع بهش حسابی صحبت کردم)

۲. بلد بودن کار با Logisim (که میشه گفت مثل نقاشی کشیدن میمونه و همین پست ها رو دنبال کنید یاد میگیرید.).

راه اندازی محیط کار

برای این که بتونیم مداراتمون رو طراحی و آزمایش کنیم، نیاز داریم که نرم افزار Logisim رو داشته باشیم. یه نسخه خوب از این نرم افزار به اسم Logisim Evolution طراحی شده که کار ما رو به شدت ساده تر کرده، خروجی گرفتن ازش بی دردسر تره، و همچنین مدارات و ویژگی هاشون دقیق تر طراحی شده. برای دانلود و نصب و روش راه اندازیش میتونید به اینجا برید. فقط هم نیازه که جاوا روی سیستمتون نصب باشه.

چالش های پیش رو

خب، برای این که بیایم یک کامپیوتر بسیار ساده طراحی کنیم نیاز داریم که یک سری سوالات از خودمون بپرسیم و جواب بدیمشون، اینطوری راحت تر میتونیم مدارات مورد نیاز رو طراحی کنیم و از پیچیدگی محصول نهایی جلوگیری کنیم.

کامپیوتر ما باید چه عملیاتی انجام بده؟

یک کامپیوتر ساده که بتونه به راحتی قابل درک هم باشه، هم باید Word Size کوچیکی داشته باشه (توی آموزش ها با ۸ بیت میریم جلو) و هم Instruction Setش باید کوچیک باشه. یک سری دستور پایه هست که هر کامپیوتری میتونه انجامش بده، ما کامپیوترمون رو اینطور طراحی مکنیم که AND, OR, NOT رو بتونه انجام بده، علاوه بر اون بتونه جمع و تفریق هم بکنه. پس باید :

  1. مداری طراحی کنیم که بتونه ۸ بیت رو NOT کنه
  2. مداری طراحی کنیم که بتونه ۸ بیت رو OR کنه
  3. مداری طراحی کنیم که بتونه ۸ بیت رو AND کنه
  4. و مدار(ها)ی طراحی کنیم که بتونن ۸ بیت رو جمع و تفریق کنن.

حالا به سادگی میتونیم بفهمیم که چی میخوایم. البته این صرفا واحد محاسبه و منطق هست، ما باید یک واحد حافظه، یک واحد کنترل و چند واحد حافظه موقتی و کوچک هم طراحی کنیم که با چسبوندنشون به هم، بتونیم به کامپیوتر کامل برسیم.

در پست های بعدی، زیرمدارهای کامپیوتر خودمون رو میسازیم. در این پست صرفا با کامپیوتر ساده و کوچیکمون آشنا شدیم 🙂

Share

نوشتن اسمبلی ۳۲ بیت

در گذشته، پست هایی که در مورد اسمبلی قرار دادم، همه در مورد اسمبلی ۱۶ بیت بودن اما حالا میخوایم بریم سراغ اسمبلی ۳۲ بیت. خب فرق ۱۶ با ۳۲ بیت در چیه؟!

اولین نکته، سایز ثبات هاست! در ۱۶ بیت در هر ثبات میتونستیم حداکثر یک مقدار ۴ رقمی هگزادسیمال ذخیره کنیم ولی در ۳۲ بیت این مقدار به ۸ رقم میرسه! حالا خیلی مسائل دیگه مثل دیتاباس و کنترل باس و … که بماند (چون اینجا داریم برنامه نویسی میکنیم و بیشتر با ثبات ها کار داریم).

اینجا، قضیه یه فرقای کوچولویی داره، مثلا اسمبلر nasm قراره استفاده بشه (گرچه قبلا در ساخت اون سیستم عامل کوچک ازش استفاده کردیم) و همچنین وقفه ها و system call هایی که استفاده میکنیم شماره و مقدارشون و مکانشون متفاوته.

بیاید این برنامه رو در نظر بگیریم :

کد   
section .text
	global_start
 
_start:
	mov edx, len
	mov ecx, msg
	mov eax, 0x04
	int 0x80
 
	mov eax, 0x01
	int 0x80
 
section .data
	msg db 'Hello, World!', 0xa
	len equ $ - msg

 

خب در بخش اول، تابعی که نیاز داریم فراخوانی کنیم رو تعریف کردیم. بعدش اومدیم start رو نوشتیم. حالا بیاید این بخش رو بررسی کنیم :

کد   
mov edx, len
mov ecx, msg
mov eax, 0x04
int 0x80

اینجا، مقدار طول رشته ای که خواستیم چاپ کنیم رو توی EDX یا رجیستر داده قرار دادیم. بعدش اومدیم پیامی که میخوایم چاپ بشه رو قرار دادیم درو نECX .

بعدش سیستم کال ۴ یا sys_write رو توی eax قرار دادیم و وقفه ۸۰ رو صدا زدیم. حالا وقفه ۸۰ با مقدار ۴ که توی eax ذخیره شده، میگرده دنبال رشته ای که توی ecx هست و بعدش چاپش میکنه.

حالا بخش دوم کد سگمنت رو بررسی میکنیم :

کد   
mov eax, 0x01
int 0x80

اینجا هم مقدار ۰۱ یا sys_exit رو وارد eax کردیم، تا برنامه پس از اجرا، خارج شه. بعد از این هم باز وقفه ۸۰ رو صدا زدیم.

بخش دیتا هم، مثل همه برنامه های قبلی، تمام داده های مورد نیاز رو با Directive ها تعریف کردیم که بتونیم به راحتی توی کد سگمنت ازشون استفاده کنیم و چون قبلا توضیح داده شده، دیگه دوباره کاری نمی کنم. فقط این پست رو نوشتم تا فرقهای اسمبلی ۳۲ و ۱۶ بیت رو ببینیم. که درآینده بسطش خواهم داد به ۶۴ بیت.

امیدوارم که این پست، بدردتون خورده باشه.

موفق و موید باشید!

Share

درآمدی بر پردازنده ها

ALUwithRegister

پس از مدتها تحقیق و بررسی در مورد پردازنده های مرسوم، و همچنین خوندن داکیومنت های مربوط به ساخت و پیاده سازی پردازنده ها، تصمیم گرفتم یک داکیومنت ساده دست و پا کنم، که توی اون از ساده ترین قطعات و بخش های کامپیوتر، به یک پردازنده ساده برسیم که بتونه چند عملیات انجام بده و نتیجه رو ذخیره کنه.

داکیومنت از اینجا قابل دریافت هست.

با تشکر.

Share

زبان ماشین، رمزگشای دستور العمل

در پست های گذشته بسیار بسیار در مورد زبان ماشین و اسمبلی بحث کردیم، اما این بار میخوایم بررسی کنیم که یک دستور، چطور کار میکنه. برای این کار، ما از ساده ترین دستورات استفاده میکنیم. قبل از اون، باید ببینیم که چه اتفاقی میفته که دستورات ما، شناسایی میشن! پس میایم و دستوراتمون رو بررسی میکنیم.

یک دستور در ماشین چطور خونده میشه؟

این خیلی مهمه که بدونیم یک دستور به چه شکلی خونده میشه. بسیار خوب، دستور زیر رو در نظر بگیرید :

کد   
MOV AX, 0

 

این دستور ماشین کد به این شکل داره :

کد   
B8 0000

 

که البته این ماشین کد، یک ماشین کد هگزادسیمال هست. اون چهار صفری که داریم که مقداری هست که خواستیم توی AX قرار بدیم و باهاش کاری نداریم، ولی B8 ما ، همون دستوریه که لازمه رمزگشایی شه و به صورت دو دویی به این شکل در میاد :

کد   
1011 1000

 

خب ما یک «دیکدر» (که یک مدار متشکل از n ورودی و دو به توان n خروجی هست) داریم، که این اعداد رو به ترتیب روشن و خاموش میکنه، و به این شکله که ما به  دستور میرسیم. در واقع مدارات مربوط به دستور رو خواهیم داشت.

بسیار خوب، حالا که میدونیم چه چیزی باعث میشه که ما بتونیم زبان ماشین رو درک کنیم، بیایم بررسی کنیم که :

زبان ماشین از چند بخش تشکیل شده؟

زبان ماشین، اول به صورت اسمبلی نوشته میشه که به زبون انسان خیلی خیلی نزدیکه. یعنی هرکس کمی انگلیسی بدونه میدونه که کلمه ای مثل ADD یعنی جمع کردن. اما، حالا مشکلی که هست اینه که وقتی «اسمبلی» به «آبجکت کد» یا همون کد هگزادسیمال تبدیل میشه رو هرکسی نمیتونه بخونه. پس راه حل چیه؟

اول باید ببینیم که یک خط آبجکت کد از چیا تشکیل میشه! بیاید این مثال رو در نظر بگیریم باز :

کد   
MOV AX, 0 ;B8 0000

 

خب اینجا من آبجکت کد رو به صورت کامنت در آوردم. دو بخش داریم، یکیش چهارتا صفر، که بهش عملوند یا Operand میگیم و دیگری «کد عملیات» یا Operation Code هست. مثلا برای انتقال به AX همیشه از B8 استفاده میشه. چرا؟ چون اینتل اینطور خواسته 😀 . بعد از این، این کد هگزادسیمال به یک کد باینری تبدیل میشه که CPU میتونه اون رو برای ما اجرا کنه.

از کجا آبجکت کد رو بخونیم؟

همه اسمبلر های موجود میتونن فایلی تولید کنن که آبجکت کد، سمبلهای به کار رفته و … رو شامل شه، و در اسمبلر MASM این فایل با پسوند LST ساخته میشه. شما میتونید با باز کردن این فایل با یک ویرایشگر متنی و خوندنش، ببینید که هر دستوری چه کدی رو داره.

یک برنامه نمونه

خب، من یک برنامه اسمبلی خیلی ساده نوشتم که اجرا کردنش هیچ خروجی ای نداره (:D ) ولی خب آبجکت کد ها تولید شده و اسمبل بدون مشکل صورت گرفته. این برنامه با آبجکت کدهاش به صورت کامنت به این شکله (بررسی دستور MOV در ۱۲ حالت مختلف) :

کد   
.MODEL SMALL
.8086
.STACK 
.DATA
.CODE
MOV AX, 0 ;B8 0000
MOV BX, 0 ;BB 0000
MOV CX, 0 ;B9 0000
MOV DX, 0 ;BA 0000
MOV AH, 0 ;B4 00
MOV BH, 0 ;B7 00
MOV CH, 0 ;B5 00
MOV DH, 0 ;B6 00
MOV AL, 0 ;B0 00
MOV BL, 0 ;B3 00
MOV CL, 0 ;B1 00
MOV DL, 0 ;B2 00
END

برای جلوگیری از ابهام هم مقداری که توی رجیسترها ریخته شده صفر هست، به این شکل کد ماشین بسیار ساده تر شده.

تا پست های بعدی، و اسمبلی بیشتر، موفق و موید و آزاد و شاد باشید! 🙂

Share