بایگانی برچسب: s

با موسیقا، رویای خود را بنوازید!

در سال گذشته، پلتفرم هوش مصنوعی مانی را معرفی کردم که معادل یا بعبارت بهتر، رقیبی برای میدجرنی به حساب می‌آمد. اما امسال، با یک غافلگیری تازه طرف هستیم.

موسیقا، پلتفرمی مبتنی بر تکنولوژی هوش مصنوعی زایا یا Generative AI است که به شما کمک می‌کند تا آنچه در ذهن دارید را با چند کلیک، به موسیقی آن هم در ژانرهای مختلف مانند امبینت، الکترونیک، پاپ و … تبدیل کنید.

نحوه استفاده از موسیقا

برای استفاده از موسیقا، ابتدا به وبسایت موسیقا به آدرس musiqa.ir بروید، سپس، منتظر بمانید تا مدل روی سیستم شما لود شود (بهتر است با رایانه شخصی خود به این وبسایت مراجعه کنید چرا که ممکن است گوشی‌های همراه شما سخت‌افزار لازم برای اجرای این مدل را نداشته باشند).

مدل حدود ۶۵۵ مگابایت حجم داشته و دانلود آن بسته به نوع اتصال اینترنتی شما، می‌تواند مدت زمان زیادی را صرف کند، اما این دانلود فقط یک بار انجام می‌شود و پس از آن نیازی به دانلود مجدد مدل نخواهیم داشت.

پس از دانلود مدل، یکی از پرامپت‌ها (داخل کادرهای زردرنگ) را انتخاب کرده و یا پرامپت مورد نظر خود را نوشته، سپس دکمه Let’s Party را بفشارید.

بسته به سخت‌افزار خود، صبر کنید تا موسیقی مورد نظرتان تولید شود!

نمونه موسیقی تولید‌شده با موسیقا

حامیان پروژه

شرکت محترم ایران‌سرور، از نیمه دوم سال ۱۴۰۲ هجری خورشیدی، با تامین زیرساخت برای پروژه‌های مانی، وکنتور و موسیقا به نخستین و بزرگترین حامی این استارتاپ تبدیل شده است.

همچنین، مفتخریم اعلام کنیم که برای تامین زیرساخت پروژه‌های دانشجویی شما نیز، آماده ارائه سرویس‌های نوت‌بوک با GPU با همکاری ایران‌سرور هستیم.

Share

مارال اینجاست، مدل ۷ میلیارد پارامتری با پشتیبانی از زبان فارسی

در دنیایی که AI و بخصوص از نوع Generative به شدت در اون مهم شده، یکی از مسائل بزرگی که باهاش روبرو هستیم، چیرگی زبان انگلیسی بر جویه که ساخته شده.

من در مطلب پیشینم، در مورد چیرگی زبان انگلیسی بر دنیای هوش مصنوعی نوشته بودم که می‌تونید بخونید و ببینید که چه مشکلاتی وجود دارند که داریم باهاشون دست و پنجه نرم می‌کنیم.

اما خب، الان قضیه کمی متفاوت شده و ما در این مطلب قراره «مارال» رو بررسی کنیم، هم این که ایده‌ش از کجا آمد و هم این که چیه و چه فرق‌هایی با تلاش‌های پیشین داره و هم این که در کل مزیتش چیه.

مارال هفت میلیارد پارامتری و مزایای آن

در تابستان امسال یا دقیق‌تر بگم روز ۱۵ تیر ۱۴۰۲، من رویدادی با نام Summertime AI برگزار کردم. رویداد برای معرفی چندین ابزار هوش مصنوعی بود و من اشاره‌ای به ابزاری به اسم «مارال» کردم.

مارال در اون زمان، قرار بود یک GPT2 تیون شده روی زبان فارسی باشه، اما خب بعد از کمی تحقیق و تفحص در مورد این مدل، فهمیدم که خیلی پیش‌تر از ما، افرادی بودند که این مدل رو با زبان فارسی تیون کنند.

حقیقتا GPT2 هرقدر هم ساختار خوبی داشت، ظاهرا مدل مناسبی برای این موضوع نبود!

اما راه‌حل رو کمی بعدتر، پیدا کردیم. در ادامه، قراره در مورد این راه‌حل صحبت کنیم و ببینیم که مارال چیه و چه مزایایی داره و برای توسعه بهترش، باید چه کارهایی کنیم.

مارال چیه؟

مارال، یک مدل بزرگ زبانی یا LLM بر مبنای مدل Mistral 7B (لینک) و تیو‌ن‌شده برای زبان فارسیه. این مدل، به صورت «پیروی از دستورالعمل» یا Instruction Following کار می‌کنه و نتایجی که تولید می‌کنه هم تقریبا هم‌ارز GPT-3.5 هستند.

مارال در حال حاضر در نسخه ۷ میلیارد پارامتری عرضه میشه، همچنین به صورت یک adapter برای Mistral هم قابل استفاده‌ست که اگر شما پیش‌تر مدل میسترال رو جایی داشته باشید، صرفا با استفاده از آداپتور مارال، بتونید ازش استفاده کنید.

همچنین مدل و جزییاتش در این لینک موجودند.

مزایای مارال نسبت به مدل‌های فارسی قبلی چیه؟

برای درک این موضوع، باید تا حد زیادی عقب بریم. ببینیم اصلا از کِی، بحث پردازش زبان طبیعی یا NLP فارسی، خیلی داغ شد. راستش رو بخواهید از زمانی که شخصا به یاد دارم، بحث پردازش و نمایش زبان فارسی، بحث داغی بود.

حتی میشه گفت چالش‌های بسیار زیادی هم در این حوزه وجود داشت. کم‌کم با پیشرفت اینترنت، این موضوع هم بهبود پیدا کرد. ناگفته نماند که البته حتی حضور فونت‌های آزاد فارسی مانند وزیرمتن (جا داره اینجا هم یادی کنیم از صابر راستی‌کردار عزیز) هم تاثیر بسزایی در این امر گذاشتند.

اما بحث Text Generation چطور؟ این بحث به صورت خاص در همون سال‌های ۲۰۱۶ تا ۲۰۱۸ که در دنیا مدل‌های LSTM و GPT-2 خیلی مطرح بودند، پا گرفت. بسیاری از اشخاص و شرکت‌های ایرانی، به سمت تولید مدل رفتند. در ادامه، دوتا از این مدل‌ها که «اختصاصا» برای زبان فارسی ساخته شدند رو بررسی و مشکلاتشون هم مطرح می‌کنم.

مدل‌های تجاری

در حال حاضر، تنها مدلی که به صورت تجاری در دسترسه، مدل وبسایت «خودنویس»ئه که خب، این مدل علیرغم این که خروجی‌های بسیار خوبی می‌تونه تولید کنه، تجاریه و نمیشه خیلی بررسی دقیقی روش داشت.

علاوه بر اون، خروجی‌هایی که تولید می‌کنه من رو یاد خروجی مدل‌هایی مانند GPT NeoX 20B و GPT J 6B میندازه و خب با توجه به قدمت این وبسایت، این موضوع کاملا طبیعیه.

یکی از مشکلاتی که مدل‌هایی مثل GPT J دارند، اینه که علاقه خاصی به تکرار خودشون دارند، البته این مشکل تا حدی هم به Tokenizer های مدل‌ها برمی‌گرده که برای زبان فارسی، مناسب‌سازی نشدند.

مدل‌های آزاد

اما در حین جستجو، تونستم دو مدل آزادی که اختصاصا برای فارسی ترین شدند رو پیدا کنم که در ادامه در موردشون کمی توضیح خواهم داد.

  • مدل ParsGPT: این مدل، دقیقا GPT2 اون هم نسخه ۱۴۲ میلیون پارامتری بود که روی دیتای فارسی ترین شده، گرچه دقت نسبتا خوبی در تولید محتوای فارسی داره، اما دو تا مشکل بزرگ داشت. اول، این که طبق معمول عادت به تکرار خودش داره (این مساله رو در ادامه در موردش صحبت خواهم کرد) و دوم این که از یه جایی به بعد، دقیقا مطالب بی‌ربط به پرامپتی که داده شده تولید می‌کنه. مثلا ممکنه از یه مطلبی پیرامون هوش مصنوعی، برای شما متن یک خبر مرتبط با وزارت خارجه بورکینافاسو تولید کنه!
  • مدل GPT2 Medium Persian: این مدل باز کمی بهتر بود. مدل بزرگ‌تر و با حدود ۳۰۰ میلیون پارامتر. اما مشکل به طور واضح، دیتایی بود که مدل باهاش pretrain شده. به قول معروف روی «آشغال‌های سئوشده وب فارسی» ترین شده و احتمال این که مطالب خلاف واقع تولید کنه بسیار بالاست. گذشته از این، هنوز مشکل تولید محتوای بی‌ربط هم در این یکی مدل به چشم میخورد.

پس راه‌حل این بود که یک مدل جدیدتر با پایه جدیدتر ساخته بشه. خوشبختانه دوستی به نام سینا رشیدی، دادگان آلپاکای فارسی رو ایجاد کرده که ازش برای ترین کردن این مدل، استفاده کردیم.

و اگر بخواهیم مزایای مارال رو نسبت به مدل‌های پیشین بگیم:

  • دیتاست بهتر
  • پارامترهای بیشتر
  • مدل پایه جدیدتر
  • خروجی‌های بهتر

خواهند بود.

مزایای مارال نسبت به مدل پایه‌ش (Mistral 7B) چیه؟

اولین روزی که از میسترال استفاده کردم متوجه شدم نسبت به مدل‌های قبلی مثل LLaMa, LLaMa2, StableLM 7B و Vicuna و امثالهم، درک بهتری از الفبای فارسی/عربی داره.

این نشان از این بود که این مدل، قابلیت فهمیدن فارسی داره ولی به قدر کافی مطلب فارسی ندیده. به همین خاطر دست به فاین‌تیون کردنش روی دیتاست فارسی زدم.

مزیت این مدل نسبت به میسترال، اینه که فارسی رو از لحاظ ساختار و معنا درست‌تر می‌فهمه و می‌تونه خروجی بسیار بهتری در زبان فارسی تولید کنه. نکته جالب اینه که زبان انگلیسی هم همچنان می‌فهمه، پس یک مدل Bilingual داریم که می‌تونیم در آینده، ازش استفاده‌های باحالی کنیم.

بذارید خیلی خلاصه بگم، مارال، تمام خوبی‌های میسترال رو داره بعلاوه درک خوبی از زبان شیرین فارسی. البته ناگفته نماند که در بخش بعدی مشکلاتی که در نسخه آلفا داشتیم رو هم لیست کردم و براتون نوشتم 🙂

در حال حاضر چه مشکلاتی ممکنه در استفاده از مارال پیش بیاد؟

  • مدل در هذیان‌گویی (Hallucination) بسیار خوبه. البته، این مشکل تقریبا تمام مدل‌های زبانیه و با گذر زمان، میشه حلش کرد.
  • مدل علاقه زیادی به تکرار خودش داره 😁
  • نتایج مدل در حال حاضر خیلی factual نیستند و می‌تونه misinformation تولید کنه.
  • مدل خیلی بزرگه و با همه سخت‌افزارها قابل اجرا نیست (البته با کد ۸ بیتی که ارائه کردیم قابل اجرا میشه)
  • فرمت پرامپتش، کمی مناسب نیست و نیازه که شروع و پایان جملات به مدل آموزش داده شه.

چه چیزی برای توسعه بهتر مارال لازمه؟

  • دیتاست بهتر (نه الزاما بزرگتر) و حتی شاید دیتاست‌های تخصصی
  • ترین شدن tokenizer روی زبان فارسی

چطور از مارال استفاده کنم؟

چنانچه قصد دارید از مارال استفاده کنید، کدهای اجرای مارال روی GPU رو در این لینک قرار دادیم. می‌تونید این کدها رو روی سیستم خودتون یا در Google Colab اجرا کنید.

جمع‌بندی

پس از این که یک ترین موفق روی Stable Diffusion و ساخت مدل «مانی» که البته در این مطلب در موردش توضیح داده بودم، باعث شد که پلتفرم هوش مصنوعی مانی رو راه‌اندازی کنم و به نوعی یک AI company تشکیل بدم، مسیرم به شکلی تغییر کرد که پشتیبانی بهتر و بهتر از زبان شیرین فارسی رو بتونم به این مدل‌ها اضافه کنم.

در حال حاضر، کاربردهای زیادی برای مدل بزرگ زبانی فارسی مانند مارال میشه متصور شد. گذشته از ربات‌های پشتیبان (که با متد RAG ساخته میشن) میشه به کاربردهای بسیار بیشتری هم برای این مدل فکر کرد. دوست دارم بدونم شما چه فکری در مورد این مدل دارید؟

در پایان هم ممنونم از وقتی که گذاشتید و این مطلب رو خوندید. امیدوارم این مطلب، برای شما مفید بوده باشه. موفق و موید باشید 🙂

Share

مصاحبه با محمدرضا حقیری، مهندس هوش مصنوعی – ابزارهای هوش مصنوعی ما را به جهانی هل می‌دهند که مردم در آن هوشمندانه‌تر کار می‌کنند، نه سخت‌تر

متنی که در ادامه می‌خوانید، ترجمه فارسی مصاحبه من با یک شرکت آلمانیه که یک رسانه هم برای انجام مصاحبه و تولید محتوا در مورد مسائل مرتبط با نرم‌افزار، کامپیوتر، هوش مصنوعی و … دارند. مصاحبه به زبان انگلیسی اینجا و مصاحبه به زبان آلمانی اینجا در دسترسند.

مصاحبه با محمدرضا حقیری، مهندس هوش مصنوعی

ما با محمدرضا حقیری، توسعه‌دهنده‌ای از ایران که هم‌اکنون مشغول کار بر روی یک مدل متن به تصویر متن‌باز به نام مانی است، صحبت کردیم.

او دانشش درباره فناوری‌هایی که برای توسعه این مدل استفاده کرده را با ما به اشتراک گذاشته است. هوش مصنوعی چندمدلی او، از Stable Diffusion و Dream Booth استفاده می‌کند.

برای درک بهتر مطلب، مثل همون متن اصلی، سوالات و نظرات اون‌ها رو بولد و پاسخ‌های خودم رو عادی نوشتم.

لطفا خودت رو برای خوانندگان ما معرفی کن. چه کارهایی کردی که به اینجا رسیدی؟ و چطور؟

من محمدرضا حقیری هستم، متولد ۹ خرداد ۱۳۷۵ (۳۰ می ۱۹۹۶) در تهران، ایران. من همیشه علاقه وافری به ساختن چیزهای مختلف داشتم و این علاقه در حوزه علوم کامپیوتر بیشتر و بیشتر شد. در سن ۱۲ سالگی برنامه‌نویسی رو شروع کردم و اولین زبانی که یادگرفتم هم ویژوال‌بیسیک ۶ بود. یادمه اولین برنامه‌ای که نوشتم، ماشین حسابی بود که فشاری که یک جرم به سطح وارد می‌کنه رو محاسبه می‌کرد.

من در دانشگاه مهندسی سخت‌افزار خوندم و بعد از این که در مقطع کارشناسی فارغ‌التحصیل شدم (که همزمان با قرنطینه بود) مطالعه هوش مصنوعی رو جدی‌تر شروع کردم. ایده‌هایی در ذهنم بودند، برنامه‌نویسی بلد بودم ولی قبل اون دوره، هیچوقت به این که مهندس هوش مصنوعی بشم فکر نکرده بودم. انگیزه اصلی برای مطالعه هوش مصنوعی رو یک سریال تلویزیونی به نام مظنون (Person of Interest) به من داد که به نوعی داشت آثار واقعی هوش مصنوعی بر زندگی بشر رو به تصویر می‌کشید.

اواخر ۲۰۲۱ و اوایل ۲۰۲۲ بود که مفهوم «هوش مصنوعی مولد» و «هنر تولیدشده توسط هوش مصنوعی» رو شناختم و همونطوری که می‌تونی حدس بزنی، عاشقش شدم 😁 به همین خاطر هم مطالعاتم جدی‌تر شدند و سعی کردم مدل خودم رو در قالب یک استارتاپ توسعه بدم تا بتونم اون چیزی که در ذهن دارم رو تولید کنم.

در حال حاضر روی مدل متن به تصویری به اسم Mann-E کار می‌کنی. می‌تونی یکم در موردش توضیح بدی و بگی چطور کار می‌کنه؟

مانی (که در بلاگم توضیح دادم یک جورایی بازی کردن با اسم مانی بوده، یک نام مردانه فارسی که البته اشاره‌ای هم به رهبر روحانی دوران ساسانی به همین نام – که نقاش هم بوده – داره) یک مدل Diffusion محسوب میشه. این به این معنیه که اول یک فضای مبهم (مثل برفک تلویزیون) درست می‌کنه و شروع می‌کنه به توسعه دادن اون تصویر که همزمان با مدلی مثل CLIP هم داره چک میشه که آیا درست داره پیش میره یا خیر. در نهایت هم تصویر تولید شده رو به کاربر نشان میده.

هدف اصلی توسعه مانی ساده‌ست، من نمی‌خوام مردم ایده‌ها و احساسات هنرمندانه‌شون رو در ذهنشون نگه دارند. ما در حال حاضر در دنیای «سیل اطلاعات» زندگی می‌کنیم. ذهن‌های ما هرلحظه با دنیایی از اطلاعات روبرو میشن و من باور دارم که داشتن ابزارهای هوش مصنوعی که کمکمون کنند تا افکار و ایده‌هامون رو در قالب عکس و نقاشی داشته باشیم، می‌تونه کمی به آرامشمان کمک کنه.

اگر دوست دارید بدونید چطور می‌تونید از مانی استفاده کنید، می‌تونید به گیتهاب من مراجعه کنید. یک دفترچه یادداشت جوپیتر اونجا هست که می‌تونه به Google Colab وارد بشه. حجم زیادی از کد هم از دید کاربر مخفی شده که حسی مشابه Midjourney یا Dall-E داشته باشه.

تو وبلاگت اشاره کردی که مدل بر مبنای Stable Diffusion ساخته شده. چه فناوری‌هایی برای این هوش مصنوعی استفاده کردی؟

این چیزیه که من بهش میگم «سوال مورد علاقه‌م». می‌تونم ساعت‌ها در مورد فناوری‌هایی که استفاده کردم، صحبت کنم. اول بذارید یک تاریخچه‌ای براتون بگم. وقتی اکثر تولیدکنندگان تصویر خوب «آزاد» نبودند (در مصاحبه گفتم free و ظاهرا یادم رفته مشخص کنم free as in freedom) تنها پایه و مبنای خوب برای یک تولیدکننده اثر هنری با کمک هوش مصنوعی VQGAN بود. یادمه که اگر نتایجش رو با CLIP ترکیب می‌کردی می‌تونست نتایج خوبی ارائه بده. در واقع این یک بازی انکودر-دیکودر بین دوتا مدل هوش مصنوعی بود.

ولی به قدر کافی خوشحال‌کننده نبود، مخصوصا این که midjourney در همون نسخه‌ها هم تصاویری تولید می‌کرد که انگار همین الان از ذهن یک هنرمند چیره‌دست بیرون آمده. پس من چه کردم؟ شخصا به این فکر بودم که چه اتفاقی می‌افتاد اگر یک نسخه متن‌باز از Midjourney داشتیم؟ و همزمان افرادی در شرکت Stability AI هم فکر مشابهی داشتند. وقتی انتشار Sable Diffusion رو اعلام کردند، من واقعا خوشحال شده بودم. کانسپت رو واقعا دوست داشتم با خودم گفتم که این به درد پروژه من هم میخوره! اینجا دقیقا جایی بود که من رفتم هرچی مقاله و تحقیق در مورد Stable Diffusion بود رو خوندم. این برای من یک دنیا ارزش داشت، چون بالاخره یک مدل تولید تصویر بسیار خوب داشت منتشر می‌شد.

این Stable Diffusion فناوری ابتدایی من بود. بی‌نهایت دوستش داشتم. همیشه تلاش می‌کردم بهترین نتایج رو ازش بگیرم. از prompt engineering صرف بگیر تا نوشتن کد‌هایی که بتونه برای من نتایج بهتری ازش بگیره. در ماه‌هایی که از انتشار نسخه اولیه‌ش گذشت، دو تا اتفاق خیلی بزرگ افتاد. اول این که Dream Booth برای Stable Diffusion ریلیز شد ( و صادقانه بخوام بگم، فاین تیون کردن Stable Diffusion رو به شدت ساده کرده) و همزمان RunwayML هم ورژن ۱.۵ از Stable Diffusion رو منتشر کرد. من مواد اولیه اصلی برای ساخت Midjourney متن‌باز رو داشتم!

بخوام خلاصه بگم: هسته اصلی Stable Diffusion ئه، از چک‌پوینت‌های نسخه ۱.۵ ای که runwayml ساخته استفاده کردم و تیون/ترین کردن با Dream Booth انجام شده. اینا Mann-E رو ممکن کردند. همچنین زبان‌های مورد استفاده هم باید بگم که عمدتا از پایتون استفاده کردم و کمی هم کد روبی برای توسعه وب نوشتم. و این تمام چیزیه که من استفاده کردم.

چه تفاوتی با Dall-E, Open Journey و باقی مدل‌ها داره؟

این سوال سختیه، بخصوص که در طول سال گذشته هزاران مدل با تکنیک‌های Textual Inversion و Dream Booth منتشر شدند. ولی اگر بخوام خلاصه بگم که چه فرقی با Dall-E داره، باید بگم که مانی به اون اندازه گرون نیست. برای استفاده از مانی، فقط کافیه که Google Colab رو راه‌ بندازید، نوت‌بوک رو واردش کنید و تمام! می‌تونید بی‌نهایت تصویر باهاش بسازید. این رو با Dall-E مقایسه کنید که به شما ۵۰ تا تصویر رایگان می‌ده و بعدش باید هزینه پرداخت کنید (که البته به نظرم مدل درآمدی بدی نیست).

ولی وقتی بحث به SD و Open Journey می‌رسه، باید بگم که من همیشه از بزرگترین طرفدارای این مدلا بودم و همیشه حس می‌کردم یه چیزی اونجا درست نیست (بخصوص با SD خام). برای این مدل‌ها، این که نتایج پرت و پلا و بی‌ربط تولید کنند چیز عجیبی نیست. پس چه کار می‌تونستم بکنم؟ حدس می‌زدم بهتره سعی کنم مدل‌های خوب رو با هم ترکیب کنم. الان می‌تونم مدعی بشم که مانی، در واقع یک هوش مصنوعی چندمدلی محسوب میشه که در حال حاضر توضیحش یکم سخته، ولی فکر کنم مقاله‌ای به زودی در موردش منتشر خواهم کرد.

اون مدل‌ها برای نقاشی، طراحی، هنر مفهومی، استایل آنالوگ، دابل اکسپوژر و … بودند. با یک چک‌پوینت و کمی prompt engineering الان می‌تونید نتایج بسیار خوبی از مدل دریافت کنید.

روی مدلی به نام Open Journey کار می‌کردی ولی اسمشو عوض کردی. می‌تونی کمی در موردش بگی؟

مانی اول کار، اسم مدل نبود؛ بلکه اسم استارتاپی بود که در تابستان ۲۰۲۲ برای همین کار راه انداخته بودم. اسم مدل Open Journey بود که اشاره به Open Source Midjourney داشت. بعدا، فهمیدم که یک نفر از تیم میدجرنی از تیم prompthero خواسته که اسم مدلشون (که فکر کنم چیزی مثل midjourney-v4-style-stable-diffusion یا چنین چیزی بود) رو عوض کنند و اون‌ها (یعنی prompthero) هم اسم مدل رو به OpenJourney تغییر دادند. من ازشون درخواست کردم که اسم مدل رو عوض کنند ولی از اونجایی که ترجیحم این بود که اون استارتاپ رو در اون برهه زمانی متوقف کنم، اسم مدل رو به مانی تغییر دادم.

و البته یک اتفاق خوشحال‌کننده هم افتاد. یک نفر لینک قدیمی به مدل من (که هنوز اسم رو Open Journey درج کرده بود) رو در هکرنیوز پست کرده بود و وبسایت من هم از لحاظ تعداد بازدیدکننده ترکید. من اون صفحه رو به صفحه درست، ری‌دایرکت کردم و فکر کنم این «ناخواسته‌ترین دیده‌شدن»ی بود که من می‌تونستم از یک پروژه متن‌باز بگیرم.

فکر می‌کنی آینده هوش مصنوعی چطوریه؟ حرف و حدیث در مورد موضوع خیلی زیاده و اکثرا ریشه در محصولات شرکت OpenAI مثل ChatGPT داره. اتفاق بعدی چیه؟

باور دارم که هوش مصنوعی آینده‌ست. برخلاف چیزی که سال ۲۰۲۱ اومد و یه فازی ساخت و رفت (و بله، منظورم متاورس زاکربرگه). هوش مصنوعی واقعی و آینده‌داره. من دارم به چشم می‌بینم که افراد زیادی از این ابزارها برای تولید پست‌های بلاگ، کپی‌رایتینگ، تولید شعار برای شرکت و استارتاپ، تولید آیکون و تصویر شاخص و حتی تولید کد استفاده می‌کنند. این خیلیه، بخصوص با وجود ابزارهایی مثل GPT-3 یا ChatGPT حتی می‌تونه رایج‌تر هم بشه. از طرف دیگر قضیه هم که بخواهیم نگاه کنیم، ابزارهای متن‌بازی مثل BLOOM, BLOOMZ, Flan-T5, GPT-Neo و … رو داریم. افراد می‌تونند این مدل‌ها و API رو متناسب با نیازهای خودشون، تغییر بدند.

و باور دارم که ابزارهای هوش مصنوعی ما را به جهانی هل می‌دهند که مردم در آن هوشمندانه‌تر کار می‌کنند، نه سخت‌تر. می‌دونی، تو می‌تونی شونزده ساعت از بیست و چهار ساعت شبانه روز رو صرف توسعه یه کمپوننت تو پروژه ری‌اکتیت کنی، درسته؟ این خیلی خوبه که شغلت و کاری که می‌کنی رو دوست داره ولی حدس من اینه که این ماجرا برای کارفرما یا سرمایه‌گذار هیچ اهمیتی نداره، بخصوص وقتی می‌فهمن که با ۱۶ دقیقه prompt engineering می‌تونستی همون نتیجه رو از GPT-3 با کمی ویرایش کد بگیری. برای من، این یک دنیای بهتره.

در پایان هم از تو، الکساندر؛ تشکر می‌کنم که اومدی سراغم.

سخن آخر

سالها پیش دوستانی در وبسایت لینوکس سیزن با من مصاحبه‌ای انجام دادند که از اینجا در دسترسه. اما خب این یکی مصاحبه، برای من پراهمیت‌تر بود، چرا که فکر کنم تنها کسی هستم که در ایران، با جدیت روی پروژه‌های Generative AI (هوش مصنوعی مولد) به صورت آزاد/متن‌باز کار می‌کنه و خب حیف بود که الان که موقعشه، منتشرش نکنم.

خلاصه که ازتون ممنونم بابت وقتی که گذاشتید و خوندید. اگر به چنین مطالبی علاقمندید، می‌تونید من رو در ویرگول هم دنبال کنید و اونجا هم مطالب مشابهی رو مطالعه کنید. ممنونم بابت وقتی که گذاشتید و خوندید.

Share

چگونه رمز موفقیت میدجرنی شکسته شد؟ نخستین دیدار با مانی ۴

پس از یک مدت طولانی ننوشتن، بالاخره برگشتم تا بخوام در مورد مانی صحبت کنم. فکر کنم مدتهای طولانیه که این پروژه رو شروع کردم ولی خب هربار به یک دلیل خاصی، از نوشتن محتوای فارسی در موردش صرف نظر کرده بودم. اما این بار آمدم تا با قدرت در مورد مانی، میدجرنی، دالی و سایر دوستانی که به کمک هوش مصنوعی برای شما نقاشی جنریت می‌کنن صحبت کنم.

ابتدا بذارید کمی از میدجرنی صحبت کنم.میدجرنی یک ابزار هوش مصنوعیه که در پیام‌رسان اجتماعی دیسکورد داره استفاده می‌شه و مردم با کمکش تصاویر جذابی تولید می‌کنند. میدجرنی، همیشه چند مرحله از باقی تولیدکنندگان تصویر جلوتر بود و همین باعث شده بود که خیلی‌ها حتی از من بپرسند «چرا مثل اون تصویر تولید نمی‌کنی؟» و در نهایت من هم به این نتیجه رسیدم که باید ته و توی این مدل خاص رو دربیارم و مانی رو بهش نزدیک یا ازش بهتر کنم. در این پست، قصد دارم در مورد پروسه کارم بنویسم.

تاریخچه مانی

پارسال همین موقع‌ها (حوالی شروع سال نوی میلادی، در این حد که حتی یادمه که جنگ اکراین هم حتی شروع نشده بود) در خیلی از شبکه‌های اجتماعی می‌دیدم که دوستان دیگری دارند با کمک هوش مصنوعی، نقاشی تولید می‌کنند و خب حقیقتا من هم با خودم گفتم که بهتره من هم سراغ این قضیه برم.

اون موقع، ابزاری به اسم VQGAN بود که با کمک CLIP می‌تونست ورودی‌های متنی رو به تصویر تبدیل کنه اما خروجی‌ها خیلی خوب نبودند و خیلی از سایر رقبا عقب بود. بهرحال این نقطه شروع خوبی بود و با یادگیری این ابزار و این که چطور کار می‌کنه، موفق به ساخت مدل‌ خودم مبتنی بر VQGAN+CLIP شدم.

اون موقع خیلی راضی نبودم و بیشتر میخواستم، اما حقیقتا ابزار آزاد و متن‌باز خوب دیگری در دسترس نبود که بخوام روی اون کار کنم تا این که با Latent Diffusion آشنا شدم که تصاویر قشنگ‌تر و بهتری تولید می‌کرد اما اون هم هنوز خیلی جای کار داشت.

مدت‌های زیادی، در نظر داشتم که پروژه «مانی» رو پیش ببرم اما پایه مناسبی نداشتم. اون‌هایی که می‌شد به راحتی به قولی پیاده‌سازی یا حتی Fine Tune بشند خروجی خوبی نداشتند و اون‌هایی که می‌تونستند خروجی‌های خوبی تولید کنند هم آموزش دادن و فاین‌تیون کردنشون منابع بسیار بسیار زیادی می‌خواست.

ظهور Stable Diffusion

اوضاع در حدود مردادماه امسال، خیلی عوض شد. یک‌باره شرکتی به اسم Stability AI (لینک) تصمیم گرفت یک مدل تولید تصویر متن‌باز ارائه کنه به اسم Stable Diffusion که خب این خودش می‌تونست یک نقطه عطف در تولید تصویر و در کل اثر هنری به کمک هوش مصنوعی محسوب بشه.

وقتی این مدل منتشر شد، مجددا مشکلی وجود داشت اون هم این بود که فاین‌تیون کردن این مدل، منابع زیادی میخواست تا این که نسخه یک و نیم این مدل، منتشر شد (لینک) که دقیقا همراهش، یک یا چند برنامه‌نویس باحال دیگر هم بودند که تکنولوژی Dream Booth گوگل رو با کمک Stable Diffusion پیاده کرده بودند. اینجا بود که فاین‌تیون کردن این ماجرا، به سادگی امکان‌پذیر بود.

اما به خوبی Midjourney نبود…

حالا یک مشکلی وجود داشت. مشکل این بود که تصاویر علیرغم زیبایی بصری‌ای که داشتند و درک و فهمی که مدل از ورودی‌ها داشت، به خوبی میدجرنی نبودند.

البته این نگرانی من نبود، عمدتا نگرانی افرادی بود که به عنوان «مشتری» سراغ این پروژه می‌آمدند و میخواستند از این پروژه استفاده تجاری کنند و خب ظاهرا نُرمی در بین هموطنانمون وجود داره که با علم به این که کجا زندگی می‌کنیم و با چه امکاناتی چی توسعه می‌دیم؛ همچنان انتظار دارند در حد و اندازه غول‌ها ظاهر بشیم 🙂

خلاصه این قضیه خیلی باعث شد به من بربخوره 😁 و به همین خاطر یک دیتاست از تصاویری که در میدجرنی تولید شده بود رو برداشتم، به همراه متون ورودیشون (دیتاست حدود ۱۰۰۰ تصویر) و آخرین نسخه مانی (لینک) رو ساختم. خروجی‌ها واقعا خوب شده بودند اون هم فقط با هزار تصویر. اما یک مشکلی بود، تنوع خروجی به شکل میدجرنی نبود تا این که کمی در دیسکورد میدجرنی، چرخیدم و نتایج جالبی دستم آمد 🙂

چگونه رمز موفقیت میدجرنی شکسته شد؟

خارجی‌ها یه اصطلاح جالبی دارند. وقتی میخوان ببینن چیزی چطور کار می‌کنه میگن Let’s look under the hood یا «بذار یه نگاه به زیر کاپوت بندازیم». اما مشکل اینجاست که میدجرنی کاپوتش جوش داده شده. پس چطور میشه فهمید اون زیر چه خبره؟

خب حقیقت اینه که در سال‌های اخیر خیلی چیزها من‌جمله ویندوز، مک او اس، آیفون! تکنولوژی‌های فیسبوک و … مهندسی معکوس شدند و نمونه‌های آزاد و متن‌باز ازشون ساخته شده. پس مهندسی معکوس میدجرنی هم نباید کار سختی باشه نه؟ فقط به کمی اطلاعات نیاز داریم. این اطلاعات رو می‌شد از دیسکورد به دست آورد.

اول، داشتم دنبال مدل‌هایی می‌گشتم که بر اساس روش کار میدجرنی ساخته شده باشند. نخستین چیزی که دیدم OpenJourney از Prompthero بود که خب کارم رو تا حد زیادی راه انداخت و تصاویر خوبی بهم داد (که حتی بعضیاش رو برای تست و بهبود مانی هم استفاده کردم). اما هنوز به خود میدجرنی، نرسیده بودم. پس باید چه کار می‌کردم؟

میدجرنی یک مدل نیست، چند مدله!

خب یکی از چیزهایی که در مورد میدجرنی خیلی جالبه اینه که همیشه در آپدیت‌هاش مدعی میشه که اضافه کردن یک کلمه یا عبارت جدید (مثلا Double Exposure) در متون ورودی می‌تونه نتیجه‌های جدیدتر و بهتری برای شما تولید کنه.

همین باعث شد که من کمی به اتفاقاتی که زیر کاپوت داره می‌افته، شک کنم. شکم هم تا حد خوبی به یقین تبدیل شد وقتی دیدم چند پروژه مشابه (که هنوز عمومی نشدند) مدعی «استفاده از چند مدل» شدند، اما چطور؟

خب یکی از راه‌هایی که میشه این حرکت رو زد اینه که چندین مدل روی چندین قضیه متفاوت ترین/فاین‌تیون بشه و بعد با یک if ساده، ورودی‌ها رو به اون‌ها فرستاد. اما سوال اینه که من چه کردم؟ آیا چندین مدل ترین کردم؟ خیر.

ترکیب چند مدل با هم و نتایج آن‌ها

اگر کمی با هوش مصنوعی آشنا باشید، احتمالا می‌دونید مدل‌های هوش مصنوعی وزن و بایاس‌هایی هستند که به داده‌های مختلف داده شدند.

حالا اگر این مدل‌ها ساختار مشابهی داشته باشند، این امکان وجود داره که اون‌ها رو با هم ترکیب کنیم و نتیجه‌های بهتری بگیریم. خب کاری که کردم این بود که اول از همه مانی رو با Open Journey و یکی دو مدل دیگه ترکیب کنم (و اسم این مدل رو new_mann_e_2 گذاشتم) و بعد یک سری مقایسه با openjourney انجام دادم.

اما حالا نیاز بود که کمی از خوبی‌های میدجرنی رو هم اینجا داشته باشیم 😁 پس حالا چه کردم؟ هیچی. آمدم و وزن‌های مانی جدید و اوپن‌جرنی رو با هم ترکیب کردم.

نتایج آزمایش‌ها

متن‌های ورودی همونطوری که مشخصه یک منظره (در سبک wasteland و cyberpunk) یک چهره (در سبک و سیاق نقاشانی چون Alphonse Mucha) و یک وسیله نقلیه (نقاشی فانتزی) بودند و مقدار seed (که تعیین‌کنندگی خوبی در جزییان نقاشی داره) در هر سه تصویر، یکی نگه داشته شد.

می‌تونم بگم به جرات مانی ۴ – که در حال حاضر در حال کار روش هستم – با متد «چند مدل» به خوبی تونسته از پس خودش بربیاد و این یعنی که همه چیز چقدر خوب داره پیش میره و با یکم تغییر و یکم ترکیبات جدید، می‌تونه نتایج به شدت بهتری هم بهم بده.

فاین تیون کردن مانی با داده‌های شما

یکی از سوالاتی که در مورد مانی ازم پرسیده شد، دقیقا همین بود که چطور میشه مانی یا حتی خود میدجرنی رو فاین‌تیون کرد. در مورد میدجرنی باید بگم متاسفم، این مدل هیچیش آزاد یا متن‌باز نیست و نمیشه کاری کرد.

اما مانی رو میشه به کمک Dream Booth فاین‌تیون کرد و احتمالا بعدتر در مورد اون هم خواهم نوشت. ولی اگر شما ایده یا دیتایی دارید، می‌تونید به من بگید تا در نسخه ۴ اضافه کنم و مدل بهتری در نهایت ارائه کنم.

جمع‌بندی و سخن آخر

بالاخره این پست هم به پایان رسید و وقتشه که یک جمع‌بندی روی مطالب گفته‌شده داشته باشیم. همونطوری که در شروع مطلب گفتم، یکی از دغدغه‌های من از زمانی که این مطالعه/تحقیق خاص رو شروع کردم این بود که تصاویر بهتری بتونم تولید کنم و این تصاویر در نظرم بود که به خروجی‌های Midjourney نزدیک یا ازشون بهتر باشند.

این یکی از وجوه این مطالعه/تحقیق بود و وجه دیگرش هم این که چطور ترکیب وزن‌ها و بایاس‌های چند مدل مختلف (که البته از معماری یکسانی تبعیت می‌کنند) می‌تونه در نتیجه اونها تغییر ایجاد کنه.

خب باید بگم که این فاز آکادمیک و تحقیقاتی به خوبی پیش رفته و کمی جای توسعه و تحقیق فنی برای این پروژه‌ها باقی می‌مونه که در آینده‌ای نه چندان دور، بروزرسانی‌های اون هم منتشر میشه.

در نهایت بگم که اگر دوست دارید محتوای مشابه و به زبان انگلیسی بخونید می‌تونید بلاگ انگلیسی من، اگر دوست دارید محتوای سابق من رو بخونید ویرگول من (بنا به پاره‌ای از اتفاقات دیگر در ویرگول نمی‌نویسم) و اگر هم علاقمند به بینایی ماشین هستید جامعه بینایی ماشین رو بخونید.

یادتان هم نره که یادگیری مستمر به بهبود زندگی شما در هر شرایطی کمک می‌کنه و همیشه شما رو می‌تونه به شخص بهتری تبدیل کنه ✌️

Share

چرا قالب وبلاگ تغییر کرد؟

مدتهای زیادی بود که به دنبال قالب خوب وردپرسی بودم که قالب کلی وبلاگ رو باهاش جایگزین کنم. اما در میان هزاران قالبی که در وبسایت‌های مختلف وجود داره، هیچ کدوم راضیم نکرد.

از طرفی، قالب قبلی مشکلات زیادی در خوانده‌شدگی داشت که عبارت بودند از مشکلات مرتبط با حالت تاریک مرورگر (ظاهرا اگر کاربر از افزونه‌هایی که حالت تاریک رو به وبسایت‌های فاقد اون حالت هستند اضافه می‌کنه؛ استفاده می‌کرد، حالتش تغییر نمی‌کرد) و مشکلات خواندن در گوشی تلفن همراه. بسیاری از این ایرادات رو از طریق سرچ کنسول گوگل متوجه شدم و خب همینطوری که دنبال قالب می‌گشتم چیزهای جالبی دیدم.

اما می‌دونید چه چیزی باعث شد به این قالب بیام؟ یادمه سالیان پیش، برای وبسایت پروژه جبیر (بایگانی وب) از قالب Pinboard استفاده می‌کردم که الان هم در وبلاگ آزادقلم (لینک) داره استفاده می‌شه. بعد یادم آمد که برای استفاده از این قالب با زبان فارسی، نیازمند کلی تغییر در CSS و غیره هستیم.

از همین رو، رفتم سراغ وبلاگ‌های قدیمی وبلاگستان فارسی که ببینم کی، از چی استفاده می‌کنه (یا می‌کرده) و هیچی به نظرم دم دست تر از کی‌برد آزاد جادی نیومد 🙂 نتیجه این شد که از همون قالبی که جادی استفاده می‌کنه، استفاده کردم. البته با شکل متفاوتی.

Share

نصب Phosh روی دبیان

گنوم، چندسال اخیر رو در حال بهبود تجربه کاربریش روی دستگاه‌هایی مثل گوشی‌های همراه و همچنین تبلت‌هاست. در کل، داره برای یک انقلاب در صفحات لمسی آماده میشه. حالا، یک رابط کاربری جالب به اسم Phosh (مخففی برای Phone Shell) ارائه کرده که روی دبیان (بله، حتی دسکتاپ!) قابل نصب و اجراست.

نماگرفت زیر، نماگرفتی از صفحه قفل این رابط کاربریه:

و خب همونطوری که می‌بینید، کار تمیز و نسبتا زیباییه. حالا سوال اینه چطور نصبش کنیم؟ در ادامه مطلب مفصلا توضیح میدم 🙂

نصب قدم به قدم Phosh روی دبیان

گام اول: نصب دبیان

توجه داشته باشید که دبیان مد نظر من اینجا، دبیانیه که شما روی پردازنده‌های x86 نصب می‌کنید. اگر قراره این دبیان روی رزبری پای باشه، یا سیستم شخصی شما صفحه لمسی داره، می‌تونید این قسمت رو نادیده بگیرید. اما من نصب رو روی یک ماشین مجازی با کمک Virtual Box انجام دادم. آموزش نصب دبیان، در اینترنت زیاد پیدا میشه؛ فلذا اینجا حرفی از آموزش نصب به میان نمیارم. فقط حواستون باشه نسخه Net Install دبیان رو دانلود و نصب کنید که چیز اضافه‌ای نداشته باشیم. برای دانلود دبیان هم می‌تونید به وبسایت دبیان مراجعه کنید و آخرین ISO مورد نظر رو بگیرید.

گام دوم: قبل از نصب Phosh چه کنیم؟

خب اولین کاری که قبل از نصب Phosh کنید اینه که با خودتون یک فنجان قهوه یا نوشیدنی خنک داشته باشید چون پروسه نصب ممکنه شما رو خسته و تشنه کنه. بعد از اون، بد نیست که سیستم رو بروزرسانی کنید. بعد از بروزرسانی سیستم‌عامل، نوبتی هم باشه نوبت اینه که مستقیم بریم سر نصب Phosh. اینجا هم جا داره نکته مهم رو متذکر بشم که من phosh رو از مخازن نصب می‌کنم تا صرفا کنجکاوی رفع شده باشه وگرنه روش درست‌تر نصب phosh نصب از کد منبعه (حداقل اگر روی سیستم x86 و به قصد توسعه نصب می‌کنید).

گام سوم: نصب و راه‌اندازی Phosh

خب برای نصب کافیه که دستورات زیر رو اجرا کنیم:

sudo apt install phosh-core

و اگر می‌خواهید Phosh شما مناسب تبلت باشه:

sudo apt install phosh-tablet

و اگر می‌خواهید نسخه کامل Phosh رو نصب کنید، کافیه که دستور رو به این شکل تغییر بدید:

sudo apt install phosh-full

و بعد از نصب حدود یک گیگابایت بسته‌های نرم‌افزاری، کل میزکار گنوم مخصوص صفحات لمسی یا همون Phosh برای شما نصب خواهد شد. پس از نصب، کافیه که اول سرویسش رو فعال و سپس راه‌اندازی کنیم:

sudo systemctl enable phosh
sudo systemctl start phosh

سپس، صفحه قفل (که بالاتر عکسش رو قرار دادم) و بعد از اون، صفحه ورود رمز به شما نمایش داده میشه.

پس از ورود رمز، وارد صفحه منوی اصلی می‌شیم که از اونجا می‌تونیم به نرم‌افزارها و ابزارهای نصب شده روی سیستم دسترسی داشته باشیم:

خب، حالا با خیال راحت می‌تونیم از Phosh استفاده کنیم و لذت ببریم 😁

نکات مهم

از اونجایی که Phosh نرم‌افزار نوپا و نسبتا جدیدیه، لازمه چند نکته مهم رو در موردش متذکر بشم:

  • نسخه خاصی ازش در مخازن دبیان پایدار موجوده که خب برای یک تست دم دستی و ویرچوال‌باکسی، بهترین گزینه بود (حداقل برای من) و خب قاعدتا روی مخازن تستینگ و ناپایدار هم قرارش دادند. موقع نصب، مراقب باشید تا به ضررتون نشه 😁 ترجیحا نصب رو روی یک ماشین مجازی انجام بدید.
  • این میزکار خاص، برای صفحات لمسی خیلی بهینه شده و استفاده ازش با ماوس و کی‌برد تا حد زیادی سخته. اگر صفحه لمسی دارید که می‌تونید به سیستمتون وصلش کنید، احتمالا تجربه کاربری بهتری داشته باشید.
  • بعضی نرم‌افزارها اندازه‌شون برای من مشکل داشت (که احتمالا برمی‌گرده به ویرچوال باکس). اگر در جای دیگری امتحان بشه شاید اندازه صفحه و برنامه‌ها، مناسب باشه.

کدوم توزیع‌ها از Phosh پشتیبانی می‌کنند؟

این هم سوال مهمیه، تا جایی که دیدم PostmarketOS (که برمبنای آلپاین ساخته شده) و همچنین Mobian (که برپایه دبیانه) از این میزکار (یا بهتر بگم پوسته) پشتیبانی می‌کنند. در مورد سایر توزیع‌ها/سیستم‌عامل‌هایی که ممکنه گنوم رو اجرا کنند، ایده‌ای ندارم.

جمع‌بندی

این بلاگ اصلا قرار نبود نوشته شه، ولی امروز از سر خستگی (دقیقا خستگی 😂) جستجو کردم ببینم Phosh چطور می‌تونه روی دبیان دسکتاپ نصب بشه. امتحانش کردم و به نظرم پروژه تمیز، باحال و آینده‌داری اومد. حالا هم تستش کردم و هم یک سری ایده‌ اومد به ذهنم. در آینده، احتمالا بیشتر با Phosh کار کنم و در موردش بنویسم. در آخر هم بابت وقتی که صرف کردید و این مطلب رو خوندید، ازتون تشکر می‌کنم.

Share

چرا گولنگ زبان مناسب شما نیست؟

در دنیای امروز، یکی از بحث‌های مهم برای هر استارتاپ و سازمانی، اینه که چطور و با چه ابزاری، محصول خودشون رو بسازند. این موضوع می‌تونه از لحظه تصمیم‌گیری برای راه‌اندازی استارتاپ در ذهن بنیان‌گذاران باشه، حین پیاده‌سازی محصول کمینه ارزشمند (MVP) ذهنشون رو بیشتر درگیر کنه و حتی پس از ارائه محصول نهایی هم همیشه فکر بازسازی و بازنویسی محصول یکی از مشغله‌های ذهنیشون باقی بمونه. چند وقت اخیر، یکی از فازهایی که میان خیلی از برنامه‌نویسان – بخصوص نسل جدید و تازه‌نفس برنامه‌نویس – رایج شده، استفاده از گولنگ در ساخت MVP و … است.

در این پست، قصد من اینه که توضیح بدم چرا گولنگ انتخاب مناسبی نیست و چرا بهتره که در یک سازمان کوچک، سمتش نریم و از ابزارهای دم‌دستی‌تری مثل پایتون یا PHP استفاده کنیم. ضمنا اینجا یک سلب ادعا بکنم که «دم‌ستی» به معنای «بد» بودن اون ابزار نیست و اتفاقا در این متن بخصوص، یک مزیت برای اون ابزار ایجاد کرده.

چطور برای پروژه خود یک زبان یا فرمورک مناسب انتخاب کنیم؟

مطلب اصلی، در واقع اینجا شروع میشه. در این قسمت یک سری ویژگی رو کنار هم می‌چینیم و گولنگ رو در کنار ابزارهای قدیمی‌تر مثل PHP یا پایتون قرار می‌دیم که ببینیم کدوم یکی برنده از میدان بیرون میاد و اگر قراره که یک استارتاپ راه بندازیم، محصولمون رو با کدوم یکی از این ابزارها بنویسیم. توجه هم داشته باشید که این بخش متاثر از نظرات شخصی من هم هست و طبیعتا ازتون میخوام که در نقدهایی که به این مطلب وارد می‌کنید، این مورد هم در نظر بگیرید.

جمعیت توسعه‌دهندگان

مهم‌ترین فاکتور در انتخاب زبان و فرمورک برنامه‌نویسی، دقیقا جمعیت توسعه‌دهندگان اونه. می‌پرسید چرا؟ چون اگر امروز خودتون کد رو بزنید، طبیعتا وقتی بیشتر با جنبه بیزنسی کارتون مواجه شید، وقت کمتری برای کد زدن خواهید داشت و نیازمند بزرگ‌تر کردن تیم توسعه استارتاپتون هستید. پس از این جهت نیاز دارید که این مورد رو حتما در نظر بگیرید. دقت کنید که Go از سال ۲۰۰۹ عرضه عمومی شده و چندین ساله که داره بعنوان یک ابزار توسعه وب دیده میشه (که تعداد این سال‌ها به انگشتای دست هم نمی‌رسه).

حالا از طرف دیگر، شما نگاه کنید که چقدر می‌تونید لاراول‌کار پیدا کنید؟ افرادی که لاراول یا جنگو (یا حتی روبی آن ریلز!!!) کار می‌کنند تعدادشون به شدت بیشتر از کسانیه که با Go کار می‌کنند. نتیجه منطقی اینه که سمت ابزاری برید که بزرگ کردن تیم توسعه‌ش براتون کم‌هزینه باشه.

تعداد کتابخانه‌ها و ابزارهای توسعه

مورد مهمی که باید بهش توجه کنید، اینه که زبان مورد استفاده‌تون چقدر ابزار داره؟ چندتا ORM استخوان‌دار داره؟ چقدر طول می‌کشه تا ایده اولیتون رو صرفا با «به هم چسبوندن ابزارهای موجود» بسازید؟ متاسفانه در این مورد هم باید بگم که Go بازندست. البته این رو هم باید در نظر داشت که Go زیادی جوانه و خب طبیعتا از بین این همه شرکت بزرگی که برای توسعه به سمتش رفتند، بالاخره از این جهت هم به بلوغ کافی می‌رسه. اما بحث ما، بحث حال حاضره. در حال حاضر، پایتون از این جهت – به نظر من – بهترین گزینه می‌تونه باشه. می‌دونید چرا؟ چون برای هر چیزی که فکرش رو بکنید یک کتابخونه ارائه کرده و واقعا شما نیاز به پیاده سازی منطقی جز منطق خالص کسب و کار خودتون ندارید.

مقیاس‌پذیری

خب، جایی که Go واقعا حرفی برای گفتن داره و برنده‌ست، در مقیاس‌پذیریه. سرعت بالای Go باعث میشه با حداقل سخت‌افزار روی مقدار زیادی درخواست و کاربر همزمان پاسخ خوبی بده. در صورتی که مقیاس کردن پایتون یا PHP انقدر راحت نیست. اگر مقیاس‌پذیری براتون امری به شدت حیاتیه و حس می‌کنید که می‌تونید تو مدت زمان کوتاهی ممکنه نیاز به مقیاس بالایی داشته باشید، سمت Go برید.

سهولت استقرار

قبل‌تر در همین وبلاگ در مورد مهندسین DevOps توضیح داده بودم (لینک) و خب یه حقیقت تلخ در مورد این عزیزان اینه که نیروهای گرانقیمتی هستند. وقتی شما از ابزاری مثل Go یا حتی پایتون برای توسعه محصولتون استفاده کنید، احتمالا بعد مدتی نیاز دارید که برای استقرار و … محصول، از یک مهندس DevOps کمک بگیرید. این نیاز ممکنه از لحظه استقرار MVP با شما باشه تا وقتی که محصولتون رو بازسازی و ری‌فکتور می‌کنید. در صورتی که برای مثال یک پروژه Laravel ای رو می‌تونید به سادگی روی یک هاست سی‌پنل، میزبانی کنید.

و تیر آخر: زمان توسعه محصول!

در قسمت اول به این موضوع اشاره کردم ولی لازمه که دوباره هم اشاره بشه. چرا که این بخش به بخش کدنویسی و تست (و کلا کارهای برنامه‌نویسانه) محدود نیست و لازمه که موارد دیگر مثل استراتژی ورود به بازار، ارائه بتاهای عمومی و … هم در نظر بگیرید. متاسفانه Go در این مورد بازندست چرا که ابزارهایی به کاملی و خوبی جنگو، ریلز یا لاراول نداره. تنها راه‌حلی که بتونید با Go با سرعت زیادی به این مرحله برسید؛ اینه که چند توسعه‌دهنده حرفه‌ای استخدام کنید که خب هزینه‌هاتون رو شدیدا افزایش می‌ده.

جمع‌بندی

حالا که این همه مثنوی هفتاد من سرودم، جای داره که یک جمع‌بندی کلی ارائه بدم از مباحث بالا. اگر موارد بالا رو در نظر گرفتید و دیدید که زبانی مثل Go یا Rust در فاکتورهای بالا برای شما کارآمد و مناسب هستند و انتخاب شخصیتونن و در عین حال، منابع کافی هم براشون دارید؛ خب دیگه پرسش نداره و بهتره هرچه سریع‌تر کارتون رو شروع کنید. در غیر این صورت، اگر از سر جوزدگی قراره از این ابزارها استفاده کنید، چند بار با خودتون مرور کنید که کدوم یکی از این‌ها، نیازهای شما رو مرتفع می‌کنند.

در پایان جا داره بگم که زبان برنامه‌نویسی صرفا ابزاریه که ما بتونیم باهاش برنامه بسازیم و برنامه‌های کامپیوتری، پاسخ‌هایی هستند به نیازهای ما. انتخاب ابزار مناسب، امکان‌سنجی خودش رو نیاز داره و امیدوارم که در این پست؛ تونسته باشم به شما کمی در این امکان‌سنجی، کمک کرده باشم.

با تشکر از وقتی که گذاشتید و این مطلب رو خوندید. امیدوارم این مطلب براتون مفید واقع شده باشه.

Share

با هوش مصنوعی، ریاضی ۱ رو پاس کن!

دقیقا دو هفته پیش، در نسخه انگلیسی وبلاگ در مورد YOLOv5 نوشتم (لینک) و توضیح دادم که چرا این مدل هوش مصنوعی برای تشخیص اشیاء رو دوست دارم (و حتی چرا شما باید دوستش داشته باشید) و خب طبیعتا دوست داشتم یک پروژه خیلی خیلی ساده و در عین حال باحال هم با این مدل انجام بدم.

ایده‌های زیادی در سر داشتم. برای مثال ایده بازی Red Light – Green Light که در سریال اسکوییدگیم همه دیدیم. اما این ایده علیرغم خوب بودنش، آنچنان کاربردی نبود. پس تصمیم من برآن شد که یک نرم‌افزار دیگر توسعه بدم. نرم‌افزاری که هم چالش داشته باشه، هم در نهایت یک کاربرد درست ازش بشه درآورد.

نمی‌دونم شما یادتونه یا نه، اما نرم‌افزار سیمبولب، دروانی خیلی خاص و معروف شد. به همین خاطر، تصمیم من هم این شد که سیمبولب رو دوباره بسازم و بعد از این که نتایج مورد نظرم رو گرفتم در موردش وبلاگ بنویسم. پس این شما و این ماجرایی که من داشتم تا این نرم‌افزار رو بسازم.

نتیجه حل مساله توسط هوش مصنوعی

گام اول: طرح مساله

در هر پروژه‌ای، اولین گام اینه که مطرح کنیم چه مشکلی رو باید حل کنیم. یا به قول دنیل کوهن Look for the pain. خب دردی که ما اینجا به دنبال حل کردنش بودیم، چی بود؟ این که بسیاری از دانش‌آموزا و دانشجوها سر ریاضی عمومی یا Calculus مشکل دارند. این مشکل ریشه‌ش کجاست؟ برای من شخصا مهم نیست که این ریشه رو بررسی کنم (البته به معنای این نیست که نظری در موردش ندارم، اما از حوصله این مطلب خارجه).

حالا درد این که بسیاری از دانشجوها و دانش‌آموزها مشکل دارند، چطور میشه براشون یک مسکن خوب تجویز کرد؟ بعنوان یک مهندس هوش مصنوعی، یا بهتر بگم مهندس بینایی ماشین در ذهنم این ایده چرخید و اون این بود که:

یک نرم‌افزار هوش مصنوعی وجود داشته باشه که از روی عکس مساله، پاسخ نهایی یا راه‌حل رو به افراد بده.

و این پروژه، در نظر پروژه بسیار بسیار بزرگی بود اما در نهایت، پروژه ساده‌ای شد. در ادامه، در راهی که طی شد توضیح خواهم داد.

گام دوم: انتخاب ابزار

گام دوم برای من، انتخاب ابزار بود. اول از همه می‌خواستم برم سراغ OCR های آماده برای تشخیص مسائل پارامتری مثل x و y و … . اما بعد دیدم که اینجا علاوه بر حروف و اعداد، نشانه‌ها هم هستند. ضمن این که به شکلی باید توان و … هم تشخیص داد. پس کمی پروژه رو نگه داشتم تا به ابزارها فکر کنم.

بعد از مدتی تحقیق و تفحص، به دارک‌نت رسیدم که برای ترین کردن YOLOv3 و YOLOv4 استفاده میشه و خب دارک‌نت مشکلات زیادی هم با خودش به همراه داره. برای مثال کاملا در سی‌پلاس‌پلاس نوشته شده و روی سیستم‌های مختلف باید از نو کامپایل بشه. با CPU درست کار نمی‌کنه. کامپایل کردنش روی مک یا ویندوز دردسره و انتقال دادنش به Google Colab هم می‌تونه تا حد زیادی مشکل‌ساز بشه.

بعد از اون الگوریتم YOLOv5 رو کشف کردم. تقریبا همه مراحل کاملا پایتونی پیش می‌رفت و این عالی بود. کم کم دیدم که میشه بعد از ترین کردن قضیه، از pytorch هم استفاده کرد و اشیاء رو تشخیص داد و از اون بهتر این بود که در تشخیص اشیاء، می‌شد خروجی pandas هم گرفت که مختصات شیء مورد نظر به همراه لیبلش در اون data frame خاص موجود بودند. پس به این شکل تشخیص این که ما با چه چیزی روبرو هستیم هم ساده‌تر از گذشته می‌شد.

وقتی این ابزار رو با چند چیز مختلف تست کردم، نوبت این رسید که در این پروژه حتما ازش استفاده کنم. اما این تمام ماجرا نیست. دقیقا وقتی که سمت OCR ماجرا هندل می‌شد، یک بحث خیلی مهم می‌موند. بحث این که چطوری باید مساله حل بشه؟ برای حل مساله هم از Wolfram Alpha گفتم کمک می‌گیرم.

خب حالا نوبتی هم باشه، نوبت اینه که داده‌های مورد نیاز رو جمع کنیم. قبل‌تر در مورد راه‌هایی که شما می‌تونید برای جمع‌آوری داده استفاده کنید، صحبت کردم و می‌تونید از اینجا بخونیدش.

نمونه داده‌های پروژه
نمونه داده‌های استفاده شده در این پروژه

گام سوم: جمع‌آوری داده

برای جمع‌آوری داده‌ها، نیازمند این بودم که روی چند سطح مختلف (وایت‌برد، کاغذ A4 و همچنین کاغذ خط‌دار) و با چند دست‌خط مختلف، مسائل ریاضی رو بنویسم. بعد از نوشتن مسائل ریاضی، از دوستانم خواهش کردم که روی صفحات مختلف و همچنین وایت‌برد، مسائل ریاضی رو بنویسند.

بعد از این که مسائل ریاضی رو روی این سطوح و با دست‌خط‌های مختلف داشتم، نوبت عکاسی ازشون بود. از هر بار نوشتن، چندین عکس از چند زاویه گرفتم. چرا که زوایای مختلف باعث میشن توزیع نور هم در تصاویر یکسان نباشه و این خودش یک مرحله data augmentation رو برای من کاهش می‌داد.

حالا یه حجم زیادی داده دارم، باید بعدش چی کار کنم؟ پاسخ ساده‌ست. الان زمانیه که ما وارد مرحله پیش‌پردازش داده میشیم.

گام چهارم: پیش‌پردازش داده

بعد از این که ما داده‌های مورد نیاز خودمون رو جمع کردیم، نیازمند اینیم که داده رو پیش‌پردازش کنیم. به طور کلی، پیش‌پردازش داده به پروسه‌ای گفته میشه که در اون قراره داده ها تمیز بشن، تغییر کنند (یا به قولی data augmentation رخ بده)، برچسب زده بشن و داده‌های غیرلازم (یا همون نویز) دور ریخته بشه.

اولین مرحله برای من اینجا، تکه تکه کردن عکس بود. شاید فکر کنید که برای تکه تکه کردن عکس، از ابزار خاصی استفاده کردم یا کدی زدم. باید بگم که خیر، ابزارم دقیقا ادوبی فتوشاپ و ابزار Slice بود. بعدش با قابلیت save for web آمدم و عکس‌های قطعه‌قطعه شده رو ذخیره کردم. پس از ذخیره نهایی عکس‌ها، نیاز بود که عکس‌ها برچسب زده بشن.

برچسب‌ها، در مرحله آموزش مدل، به ما کمک می‌کنند که اشیاء رو در تصاویر پیدا کنیم. این برچسب‌ها در مراحل بعدتر به کمک ما میان تا بتونیم مسائل یافت شده رو به ولفرام‌آلفا بدیم تا برامون حلش کنه. پس لازم بود که این اتفاقات بیفته.

پروسه برچسب‌زنی

گام پنجم: آموزش مدل YOLOv5

و اما گام یکی مونده به آخر دقیقا این بود که مدل آموزش داده بشه. آموزش این مدل با pytorch به شدت سرراست و راحته و کلش اجرا کردن یک دستور در ترمیناله. باز با این حال، مشکلات عدیده‌ای داشتم. برای مثال روی لپتاپ شخصی چون GPU مناسب نداشتم، آموزش به شدت طولانی می‌شد. آموزش رو به Google Colab منتقل کردم و چون پلن رایگان داشتم، اونجا هم یک سری داستان جدیدتر پیش آمد. اما بهرحال هرطور که شد، مدل آموزش داده شد و نتایج خوبی هم ازش گرفتم.

در مورد آموزش مدل و نحوه کار اون به زودی محتوای آموزشی جدیدی تولید خواهد شد که به تفصیل در اون توضیح میدم چطور می‌تونید YOLOv5 رو خودتون آموزش بدید و باهاش کار کنید. در حال حاضر، توضیح مراحل آموزش تا حد زیادی از حوصله این پست وبلاگ خارجه.

و گام نهایی: آزمایش مدل و نوشتن رابط ولفرام آلفا

پس از این که مدل آموزش داده شد، نیاز بود چندین خط کد پایتون نوشته شه برای چند منظور. اول این که وزن‌هایی که لازم بود از مدل آموزش‌داده‌شده، لود کنه. دوم این که یک عکس رو از ورودی بگیره و مراحل inference رو روش انجام بده و در نهایت، اگر کاربرخواست اون رو بفرسته به ولفرام آلفا و مرورگر رو براش باز کنه.

برای این مرحله، برخلاف باقی مراحل وقت زیادی نذاشتم ولی با این حال کدش (بدون وزن‌ها) در گیت‌هاب شخصی من موجوده و می‌تونید نگاهی بندازید. البته که به زودی گیت‌هاب بروزرسانی میشه و شما قادر خواهید بود که وزن‌ها رو هم دانلود کنید. اما فعلا وزن‌ها در دسترس نیستند.

در نهایت هم برای این که عملکرد قضیه رو ببینید، این ویدئو کوتاه رو می‌تونید تماشا کنید که هم inference رو تست می‌کنیم هم حل مساله با ولفرام رو:

جمع‌بندی و مشکلات این نرم‌افزار

این پروژه به عنوان یک پروژه تفریحی، واقعا تفریح خوب و سالمی بود و کلی یادگیری برای من داشت. یادگیری دقیق‌تر و عمیق‌تر YOLOv5، یادگیری دقیق‌تر و عمیق‌تر PyTorch و از همه مهم‌تر درگیر شدن با چند مساله و به قولی، دردهای دنیای واقعی. از نتیجه کاملا راضی بودم و هستم، اما فکر نکنم در آینده این پروژه خیلی برام راضی‌کننده باشه.

احتمالا بعد از مدتی به این پروژه برگردم و بزرگترین مشکلش – یعنی شباهت زیاد ورودی‌ها به هم – رو طور دیگری هندل کنم. برای این که ببینیم یه چیزی در پوزیشن توان یه چیز دیگه قرار گرفته یه چاره‌ای بیاندیشم و … . خلاصه که راه برای بهبودش زیاده و این بهبود‌ها رو شخصا پیگیر هستم که در این پروژه اعمال کنم. شاید هم لازم باشه داده ورودی رو افزایش داد یا حتی مدل مورد استفاده رو عوض کرد.

در نهایت، از شما بابت وقتی که برای خوندن این مطلب گذاشتید، ممنونم. امیدوارم که این مطلب مفید واقع شده باشه و به دردتون خورده باشه. ضمن این که اگر به این تیپ مسائل و مطالب علاقمند هستید، می‌تونید من رو در ویرگول هم دنبال کنید و اونجا هم مطالبم رو بخونید. اگرچه در ویرگول عمده مطالبم مرتبط با بیزنس، موفقیت و ایناست.

در نهایت از شما خواهش می‌کنم که اگر این مطلب براتون مفید بود، یک قهوه به انتخاب خودتون مهمانم کنید تا موقع نوشیدن قهوه به یادتون باشم و از این دست مطالب، بیشتر تولید کنم.

Share

داستان پروژه جبیر – استیو جابز نه، خود خودم (قسمت آخر)

در دو پست قبلی (+، +) در مورد پروژه جبیر با شما صحبت کردم و توضیح دادم که ایده‌ش از کجا اومد و چی شد و چه کردیم. قسمت دوم یکم پرش قلم من زیاد بود چون موضوعات زیادی رو شامل می‌شد اما خب نیاز بود که گفته بشه. حالا رسیدیم به قسمت آخر. در این قسمت، میخوام از این بگم که در جشنواره خوارزمی چه گذشت و چرا جشنواره خوارزمی شروعی بود بر پایان این پروژه.

بذارید قبل از هرچیزی، یک مرور کلی داشته باشیم بر دو قسمت قبلی. در قسمت اول، توضیح دادم که من شیفته اپل شده بودم و می‌خواستم مثل استیو جابز، یک شخصیت مهم در دنیای تکنولوژی باشم و همون قدر شناخته بشم و همونقدر هم ثروتمند (بالاخره آرزو بر نوجوانان عیب نیست، هست؟) و تصمیمم این شد که یک سیستم عامل بسازم و بعد از کلی تحقیق و توسعه؛ نتیجه این شد که یک سیستم عامل مبتنی بر گنو/لینوکس و توزیع اوبونتو بسازم. اسم این پروژه هم گذاشتیم جبیر.

در قسمت دوم، از فراز و نشیب‌های فنی این قضیه گفتم. از این گفتم که چی شد که اینطوری شد و چی شد که ساخته شد. بذارید ساده‌تر و مفصل‌تر بگم، اول گفتم که فاز تحقیقم چی بود و چه کردم و چه چیزایی خوندم. بعد گفتم که چرا تصمیم گرفتم بیام سراغ سیستم‌عامل‌های متن‌باز موجود مثل لینوکس یا BSD و در نهایت گفتم چرا لینوکس رو انتخاب کردم. بعدش از عادت Distro Hopping گفتم (این عادت یعنی که شما بیایید و توزیع‌های مختلفی تست کنید و همیشه روی یک توزیع ثابت نمونید) بعدش هم گفتم چی شد که مینت و اوبونتو رو به عنوان مبنا در نظر گرفتم و چطور نسخه‌های اولیه جبیر ساخته شد.

بعد از اون، از انتشار جبیر و اشتباهاتی که در ساخت این پروژه شد نوشتم. بعد از این موضوع، وارد بحث نسخه ۴ که نسخه جنجالی جبیر بود شدیم (نسخه‌ای که به اینترنت متصل نمی‌شد، به همراه نظر جادی و تبعاتش) و بعد از اون چه شد که به سراغ BSD رفتیم و همین موضوع هم مزید بر علت شد که جبیر روز به روز به پایان خودش، نزدیک‌تر بشه.

جشنواره خوارزمی

جشنواره خوارزمی، یک جشنواره‌ست که در سطوح مختلف (چه مقطع تحصیلی و چه تقسیمات جغرافیایی) برگزار می‌شه و یکی از اهدافش، اینه که به مخترعین و مبدعین و محققین جوان کمک کنه تا نتایج کارهاشون دیده بشه. مقام آوردن در این جشنواره، خودش یک سری امتیاز خاص به همراه داره که این امتیازات عبارتند از دانشگاه بدون کنکور رفتن (طبیعتا در رشته‌ای که پروژه/اختراع ارائه کنید) و معافیت سربازی و این‌ها. البته این‌ها مال اون زمان بود و الان نمی‌دونم چطور شده ولی فکر نمی‌کنم تغییری کرده باشه.

احتمالا اگر الان این رو خوندید و دبیرستانی هستید، براتون خیلی دغدغه شده که حتما در این جشنواره‌ها شرکت کنید، ولی خواهش می‌کنم که قبلش حتما مطلبی که اول این پست لینک شده رو یه نگاه بندازید. قدیمیه ولی ارزشش رو داره. خلاصه بگذریم؛ چیزی که اینجا مهمه اینه که شما بدونید اگر طرحتون به زعم داوران جشنواره واقعا خوب بیاد، امتیازاتی دریافت می‌کنید که می‌تونه شما رو به اهداف زندگیتون نزدیک کنه.

حقیقتا من از وقتی بچه‌تر بودم، بچه‌هایی که به این جشنواره راه پیدا می‌کردند رو از تلویزیون و روزنامه و … دنبال می‌کردم، دلم می‌خواست روزی مثل اون‌ها باشم. مادامی که در تهران در مقطع راهنمایی تحصیل می‌کردم خبری از این جشنواره برای دانش‌آموزان راهنمایی نبود (سالی که ما شرکت کردیم ولی بود) و همین امر، باعث شده بود که من با این تیپ جشنواره‌ها غریبه باشم. اما در دبیرستان اوضاع فرق کرد. ما این پروژه رو شروع کرده بودیم. بخصوص سال دوم دبیرستان که بودم، رضا باقرزاده عزیز هم به من پیوست و با هم پروژه جبیر رو پیش می‌بردیم.

یک روز، ما از مدیر مدرسه‌مون خواستیم که سالن اجتماعات مدرسه رو در اختیارمون بذاره و از بچه‌هایی که اون ساعت خاص، بیکارن دعوت کنه که بیان و پروژه ما رو ببینن. این هم خودش یکی از حرکات «استیو جابز»گونه بود 🙂 خلاصه این اتفاق افتاد و از قضا، مدیر مدرسه هم خودش اومد در اون جلسه دورهمی حضور پیدا کرد. این قضیه برای ما خیلی خوب بود چرا که حسابی در چشم مدیر مدرسه، درخشیده بودیم.

اما این تمام ماجرا نبود …

محمدرضا حقیری (چپ) و رضا باقرزاده (راست) - توسعه‌دهندگان پروژه جبیر

روز بعد اون کنفرانس، مدیر مدرسه از من و رضا درخواست کرد که جزییات پروژه رو براش بنویسیم. من هم یک صفحه A4 نوشتم تحویلش دادم. یک هفته بعد، ما رو از سر کلاس (که اگر اشتباه نکنم دینی بود) خواستند به دفتر. ما اول کمی ترسیده بودیم (بهرحال سیستم آموزشی ما ایجاب می‌کنه که از دفتر بترسیم 😂) و وقتی رفتیم، دیدیم یک آقای میانسالی هم اونجا هستند. مدیر مدرسه به ما گفت که ایشون از مسولین آموزش و پرورش استان هرمزگانن و پروژه ما در مرحله استانی خوارزمی پذیرفته شده.

ایشون گفت که روز بعدش، بریم پیشش. پرسیدیم بعد مدرسه؟ گفت نه، از مدیرتون اجازه بگیرید و دو زنگی رو ما در خدمتتون هستیم. ما هم از این بابت خوشحال شدیم. می‌دونید چرا؟ چون بالاخره دو زنگ پیچوندن هم خودش صفای خودش رو داشت. حالا از این حال و هوا بیاییم بیرون. ما فرداش رفتیم پیش ایشون. ایشون ما رو برد پیش مسولین خوارزمی و کلی تحویلمون گرفتند. این تحویل‌گیری‌ها البته دلیل داشت! دو سه سالی بود که از استان هرمزگان در رشته کامپیوتر هیچ پروژه‌ای معرفی نشده بود و این‌ها هم از این موضوع حسابی خوشحال بودند.

خلاصه که این دوستان، به ما گفتند یک A4 کافی نیست و در قالب یک پرپوزال باید در مورد پروژه بنویسیم. من و رضا هم گفتیم پس ما می‌ریم روی این کار می‌کنیم و می‌آییم پیش شما. اون خانمی که در آموزش پرورش به ما گفت که بعدا بریم پیشش، گفت که چهارشنبه ها عصر هم حضور داره در همون دفتر و نیازی نیست کلاس رو بخاطر قرار با ایشون بپیچونیم. خلاصه کلام که ما رفتیم و یک فایل ۲۰-۳۰ صفحه‌ای با عنوان «سیستم‌عامل جبیر» نوشتیم و این رو پرینت کردیم و در طلق و شیرازه قرار دادیم و چهارشنبه بردیم پیش ایشون.

بعد از کمی بررسی، غلط‌های این پرپوزال رو به ما گفت و ما اون رو اصلاح کردیم. بعدش به ما گفتند که تا تیرماه حدودا صبر کنیم (و این ماجرا حدودای فروردین اتفاق افتاد اگر درست یادم باشه). ما هم به درس و مشقمون رسیدیم و امتحان دادیم. اما خب اینجا یک سری اتفاق خاص هم افتاد.اتفاقاتی که به نوبه خودشون جذاب و جالب بودند.

جشنواره خوارزمی استانی

جشنواره استانی، برخلاف کشوری، اینطوری نیست که شما بری از پروژه دفاع کنی. بر اساس همون توضیحاتی که از پروژه‌ها ارائه شده، داوری می‌کنند و اونایی که حس میشه شانس خوبی برای مقام کشوری آوردن دارند انتخاب میشن. بعد از این، این مورد به صاحبان ایده و پروژه، ابلاغ میشه.

در همین حین، ما که سخت مشغول کار روی جبیر بودیم و حتی یادمه که دونفری با رضا می‌رفتیم پیش خدمات کامپیوتری‌ها که مجابشون کنیم که یکی دو تا سیستم بدن دست ما که روش جبیر نصب کنیم (شاید باورتون نشه ولی یکی از پلن‌های من، برای هر توزیعی که درش نقشی داشتم تولید کامپیوترهای رومیزی با همون سیستم‌عامل هم بوده) و معمولا اون‌ها هم یه چراغ سبز الکی نشون میدادن، یک باره به تلفن رضا زنگ زدند. رضا گفت «آقای …؟» و بعد گوشی رو روی اسپیکر گذاشت و به ما اعلام شد که در استانی، رتبه اول شدیم (لینک خبر).

در مورد تاریخ خبر باید به شما بگم که این اخبار، بعد از برگزاری جشنواره کار شدند. یعنی ما تیر ماه خبر داشتیم از این که در استانی پذیرفته شدیم ولی ظاهرا قوانینی که روی جشنواره حاکمه، ایجاب می‌کرد که تا زمان شروع جشنواره سال بعد خبری ازش کار نشه. خلاصه بگذریم. ما دو تا هم خوشحال و سرخوش گفتیم که فرداش می‌ریم آموزش پرورش.

در آموزش و پرورش، بیش از گذشته تحویلمون گرفتند! این بار به ما گفتند که نیازه تا فیلمی بگیریم که هردو توش باشیم (البته ما دو فیلم مجزا گرفتیم. چرا که رضا بیشتر روی جنبه UI و ظاهری قضیه کار می‌کرد و من روی بیس سیستم) و بعد یک پرپوزال دیگر بنویسیم که یک سری ملاحظات خاص رو درش رعایت کرده باشیم. این ملاحظات شامل نحوه فهرست‌بندی، استفاده از فونت و … بودند. خلاصه ما دوتا CD و یک کتابچه تحویل دادیم و بعدش مدت نسبتا طولانی، از هم دور شدیم.

جشنواره خوارزمی کشوری

مرداد ماه بود و من به همراه مادرم چند روزی (فکر کنم دو هفته!) آمدیم تهران. در همین روزها، یادمه که رضا به من زنگ زد. بهش گفتم چه خبر؟ چه کارا می‌کنی؟ و خیلی عادی حرف زد. برای من این موضوع خیلی جالب بود که چطور تونسته بود اونقدر خونسرد باشه و یهو من رو غافلگیر کنه :)) پای تلفن به من گفت که «فلانی زنگ زد و گفت که اوایل شهریور باید تهران باشیم که از پروژه دفاع کنیم.

خلاصه بعد برگشت من به بندر، قرار شد با رضا بریم و در مورد این پروسه بپرسیم. به ما گفتند که داورا اینطورین و باید چه کنید و … (که با تقریب خوبی البته درست نبود) و به ما پولی دادند که بلیت هواپیما تهیه کنیم و با هواپیما بریم تهران. همچنین بودجه‌ای به ما دادند که لباس‌های متحدالشکل تهیه کنیم و ما هم دوتا پیراهن گرفتیم که لعنت خدا هم گرونش بود، ولی سال ۹۱ بابت هر پیراهن ۶۰ هزار تومان پول دادیم 😂.

خلاصه ۵ شهریور ۹۱ شد. ما رفتیم فرودگاه بندرعباس و سوار یک عدد ایرباس A300 هواپیمایی ماهان شدیم و به سمت فرودگاه مهرآباد تهران پرواز کردیم. در تهران هم مسول آموزش و پرورش هرمزگان (همون آقای میانسالی که کارهای ما رو انجام داده بود) آمد و ما رو به خوابگاه دانشجویی دانشگاه تربیت دبیری شهید رجایی برد. حقیقتا تا حد خوبی حالمون گرفته شد، چرا که به ما گفته شده بود برای ما هتل رزرو شده و از این دست چرت و پرتا. ولی خب ایرادی نداشت، فرداش روز بزرگی بود.

فرداش رفتیم. ظهر شد و دعوت شدیم که بریم داخل اتاق. داخل اتاق، سه‌تا آقا نشسته بودند که علی‌الظاهر، اساتید کامپیوتر همون دانشگاه بودند (اینجا این رو بگم که بعدا روش بحث صورت بگیره، اگر جشنواره خوارزمی یک جشنواره کشوریه، آیا بهتر نیست که فراخوانی زده شه و از اساتید و صاحب‌نظران کل کشور خواسته شه که داوطلب بشن؟ چرا فقط یک دانشگاه خاص؟) و یک سری سوال پرسیدند. ما وقتی داشتیم صحبت می‌کردیم و …؛ من اشاره کردم که جبیر مبتنی بر گنو/لینوکس ساخته شده. یادمه یکی اونجا خندید و گفت «پس مثل همون لینوکس فارسیه‌ست…».

حالا شما خودتون حساب کنید که این که این دوستان زده بودند تو کانال مسخره‌بازی، چقدر به ما فشار آورد. خلاصه ما ارائه و دفاعمون رو تحویل دادیم و آمدیم بیرون. ناهاری بر بدن زدیم و کمی تهران‌گردی کردیم و بعدش هم رفتیم سمت فرودگاه. دقیقا یادمه بعد از این که مسول آموزش پرورش ما رو ترک کرد، ما کاری نداشتیم که انجام بدیم پس با رضا نشستیم به خوندن آموزش Bash و اسکریپت‌نویسی 😁

خلاصه به سمت بندرعباس برگشتیم و بعد از اعلام نتایج، فهمیدیم که رتبه قابل قبولی در این جشنواره کسب نکردیم. این خودش یک شکست بسیار بسیار بزرگ برای ما محسوب می‌شد. گرچه کادر مدرسه تاکید داشتند سال بعدش هم شرکت کنیم ولی حقیقتا ما سال بعد تصمیم داشتیم دیگه شرکت نکنیم و همین هم شد. این دقیقا اینجا به این معنا بود که پروژه هم داره تا حد خوبی به آخرای خودش نزدیک میشه.

رفتن روی BSD، بزرگترین اشتباه

هنوز که هنوزه، من سیستم‌عامل FreeBSD رو به شدت دوست دارم و محاله وقتی نسخه جدید میده، نصبش نکنم و باهاش کمی بازی نکنم. اما حقیقت امر این بود که BSD ها – به جز مک – واقعا برای استفاده دسکتاپ و روزمره مناسب نیستند. حتی روی سرور و روتر و … (که BSDها حرف‌های به شدت زیادی برای گفتن دارند) هم معمولا انتخاب خوب و اول نمی‌تونن باشند.

یکی از مهم‌ترین دلایل، اینه که BSDها معمولا ساپورت سخت‌افزاریشون اونقدری که باید و شاید، خوب نیست. دلیل دیگری که به ذهنم می‌رسه اینه که استفاده از BSDها به شدت محدوده و بین هزاران شرکت و استارتاپی که مبتنی بر لینوکس هستند، شاید فقط Netflix, WhatsApp و Sony باشند که از FreeBSD (یا نسخه‌های دیگر BSDها) استفاده کنند. همین امر، باعث شده که BSDها مستندات کمتر و جوامع کوچکتری داشته باشند.

و البته اشتباه دیگری که داشتم این بود که فکر می‌کردم اگر برم روی BSD و یه بخش خوبی از رابط کاربری هم خودم بسازم (که تاحدی این کار رو کرده بودم) و مجوز اون هم BSD قرار بدم، شاید بتونم کد رو ببندم. اما هیچ کس نبود بهم این نکته رو گوشزد کنه که بستن کد برای پروژه‌ای که تیم کوچکی داره و ساپورت مالی نمیشه و سرمایه‌گذار خاصی هم نداره، سم مطلقه.

خلاصه با پیاده‌سازی نه چندان بد، تفکرات اشتباه و صد البته واکنش‌های عجیب و غریب جوامع نرم‌افزار آزاد و متن‌باز ایران، این پروژه باز بیش‌تر و بیش‌تر روی سراشیب سقوط قرار گرفت. اما حقیقت امر اینه که یکی از بزرگترین تیرهای خلاص این قضیه رو، همین جامعه نرم‌افزار آزاد به این پروژه وارد کرد.

واکنش‌های جامعه نرم‌افزار آزاد ایران و پیامدهایش

من اصلا دوست ندارم در نقش قربانی فرو برم و شکست‌ها و عدم موفقیتم رو گردن کسی بندازم. حقیقتا از این رفتار به شدت بدم میاد و اگر ببینم کسی چنین رفتاری داره خیلی سریع، از دایره دوستی و حتی آشنایی من ممکنه حذف بشه. پس امیدوارم این بند خاص از مطلب من، این حس رو القاء نکنه که در نقش قربانی فرو رفتم.

بگذریم، جامعه نرم‌افزار آزاد ایران، که در حال حاضر عمدتا حول اوبونتو و در فروم اوبونتو متمرکز شده تقریبا (و این تمرکز هم خودش سم مهلکیه) رفتارهای عجیب و جالبی دارند. این جامعه عموما اینطوری بود که خیلی سخت افرادی که بیرون گود بودند رو می‌پذیرفت و خیلی وقت‌ها هم نمی‌تونستند یک سری موضوعات خاص رو بپذیرند. به همین دلیل، رفتارها بیشتر شبیه گنگسترها و یاکوزاها می‌شد. حقیقتا در مقابل پروژه جبیر هم تا حد زیادی به این شکل برخورد نشان دادند.

برخوردهایی از این دست که «چرا به فلان پروژه کمک نمی‌کنی؟» اصلا از نظرم بد نیست. خیلی هم خوبه و خیلی راحت می‌تونه شما رو مجاب کنه که نیاز نیست چرخ رو از اول اختراع کنید. اما خب، گاهی برخوردها سمت ترولینگ و قلدری سایبری پیش می‌رفت. مثلا شخصی میومد می‌گفت «بیا کرنل رو بکن داروین» و بعد چند نفر ادامه می‌دادند. نکته جالب هم این که از سادگی من هم به عنوان یک نوجوان، تا حد خوبی بهره‌کشی شده بود اینجا. من الان دانشی دارم که بهم می‌گه که تعویض کرنل بسیار سخته، و در بعضی موارد کاملا ناممکن. اما اون موقع من چنین آگاهی‌ای نداشتم.

خلاصه بگم که کم کم به جایی رسید که من دیگه می‌فهمیدم کجاها ملت دارند دستم میندازن. حقیقتا خوشم اومده بود که خودم همراه شم با این قضیه و تا می‌تونم چرت و پرت ببافم. اما خب حقیقتا این به ضرر من شد چرا بعدتر، برچسب ترول به من چسبید و از جامعه کاملا پاک شد. جامعه‌ای که تقریبا همیشه نشون داده با افراد جدید – صرفنظر از این که آدم‌های خوبین یا بد – چنین برخوردی رو داشته و خب این برخوردها، نتایج خوبی هم نداشته. برای مثال، خود من از سال ۹۳ تا ۹۶ واقعا در این جامعه هیچ حضور فعالی نداشتم و ۹۶ دوباره برگشتم بهش. سال ۹۹ هم موارد مشابهی پیش آمد و دلخوری‌هایی ساخته شد.

خلاصه بگذریم از این موضوع، می‌خواستم صرفا این موضوع رو شفاف کنم که جامعه، از دور ممکنه قشنگ به نظر برسه اما خب درونش نیازمند سازگاری بالا و همرنگ جماعت شدنه. حقیقتا من هم شخصی نیستم که بخوام همرنگ جماعت باشم، به همین خاطر ممکنه در جوامع مختلف، متضرر بشم 😁

سخن آخر

اول از همه از شما ممنونم که این مطلب رو خوندید و تا اینجا اومدید. دوم، میخوام ازتون دعوت کنم که علاوه بر این وبلاگ، ویرگول هم می‌تونید مطالب من رو بخونید ولی در ویرگول معمولا انقدر حرافی نمی‌کنم 🙂 و در نهایت، میخوام یک جمع‌بندی کلی روی این سه قسمت بکنم و بگم که به پایان آمد این دفتر، حکایت همچنان باقیست.

حقیقتا بعد از شکست پروژه جبیر، من یک درس بزرگ گرفتم. درسی که بهم گفت «نیاز نیست استیو جابز دوم باشی، تو خود خودت باش» و این درس به نظرم بزرگترین نکته شخصیتی بود که می‌تونستم از انجام چنین پروژه‌ای دریافت کنم. درس و نکته بعدی هم این بود که حرف‌های اطرافیان می‌تونه به شدت روی روان آدم تاثیر بذاره و نباید گذاشت این حرف‌ها، از ما یک موجود کینه‌ای بسازه که بعدتر نیازمند انتقا‌م‌گیری و پرونده‌سازی و فلان باشه. درس‌های شخصیتی و روانی این پروژه، واقعا برای من مهم و ارزنده بودند.

از نظر فنی هم، درس‌های خوبی گرفتم. برای مثال اندازه افرادی که LPIC 1, 2 می‌گذرونند از لینوکس یاد گرفتم. تا حد خوبی پایتون یاد گرفتم. حتی همین امر باعث شد که بعدتر، روبی یاد بگیرم و … . همچنین یاد گرفتم که نیاز نیست برای متفاوت بودن حتما به سمت BSD رفت بلکه یک رابط کاربری متفاوت هم می‌تونه به خودی خود، تا حد خوبی تاثیر مثبت روی ذهن افراد داشته باشه.

از منظر بیزنسی هم بخواهیم نگاه کنیم یک درس خیلی خوب گرفتم. اون این که «وقتی تیم کوچیکه یا پروژه تک‌نفره جلو میره نیازی نیست که کد، بسته باشه. اتفاقا باز بودن کد به نفع توئه». و همین باعث شد از اون به بعد عمده پروژه‌های من روی گیتهابم قرار بگیرند.

خلاصه که یک پروژه شکست‌خورده، می‌تونه پر از درس برای ما باشه. مهم اینه که ما بخواهیم همیشه در سوگ بمونیم؟ یا این که به قدری سوگواری کنیم و بعد از اون سوگواری به سمت انجام یک پروژه جدیدتر قدم برداریم. نمی‌دونم فیلم Whiplash رو دیدید یا نه، اما در صحنه‌ای یکی از شخصیت‌ها میگه «چارلی پارکر وقتی با اون صحنه مواجه شد، اول سوگواری کرد. بعد یک روز کامل استراحت کرد و بعدش اونقدر تمرین کرد که ما امروز ازش حرف بزنیم». پس باید گفت که این ماییم که انتخاب می‌کنیم چارلی پارکر باشیم، یا اون نوازنده‌ای که با یک شکست، کلا ساز و نوازندگی رو میذاره کنار.

در پایان، مجددا از شما بابت وقتی که برای خوندن این مطلب گذاشتید تشکر می‌کنم. همچنین امیدوارم که این تجربه شکست طولانی، تونسته باشه برای شما جرقه‌ یا کمکی باشه در هندل کردن پروژه‌هاتون یا حداقل بهتون کمک کرده باشه که چطور با پروژه‌های شکست خورده کنار بیایید. امیدوارم که در آینده نزدیک، بتونم با مطالب بیشتری در خدمت شما باشم.

Share

داستان پروژه جبیر – عملکرد وزنیاک، همچنان رویای جابز (قسمت دوم)

در مطلب پیشین (لینک) اشاره کردم که ایده‌ها و جرقه‌های ابتدایی پروژه جبیر، از کجا به ذهنم رسید و چرا مهم بود که اون ایده رو پیاده کنم و حتما به اون هدف برسم. این موضوع، باعث شد که من بیش از پیش تلاش کنم که به هدفی که برای خودم گذاشتم برسم.

در این یکی مطلب، قصدم اینه که در مورد فرایندی که جبیر برای ساخته شدن طی کرد صحبت کنم و قطع به یقین، خیلی از این مراحل قدیمی‌تر از اونی هستند که شما بتونید الان پیاده‌سازیشون کنید. پس اگر نیازمند این هستید که توزیع لینوکسی مبتنی بر دبیان یا اوبونتو بسازید، می‌تونید راهنمای عملی قرار دادن فیل در یخچال و همچنین چگونگی ساخت توزیع لینوکس رو بخونید. ولی اگر دوست دارید سفر طولانی یک نوجوان در مسیر پیاده‌سازی رویاش رو بدونید، به خوندن همین مطلب ادامه بدید.

بررسی راه‌های ساخت یک سیستم‌عامل

ابتدای راه، باید بررسی می‌کردم که سایرین چطور سیستم‌عامل ساختند و چطور شده که سیستم‌های عاملشون، رشد و نمو خوبی داشته. همونطور که در قسمت اول هم اشاره کردم، یکی از idol های من در زندگی، استیو جابز بود (و کماکان هم هست) و طبیعتا اولین سیستم‌عاملی که به نظرم اومد که داستان موفقیتش رو مطالعه کنم، مک بود. اما مک یک مشکل بزرگ داشت. بررسی درست و حسابیش نیازمند این بود که حتما یک سیستم اپل تهیه کنم. حالا چه آی‌مک، چه مک‌بوک و … . به همین خاطر، مک رو بیخیال شدم.

داستان موفقیت ویندوز هم تقریبا اظهر من الشمسه. این سیستم‌عامل عمده محبوبیتش رو به این خاطر داره که روی سیستم‌های سازگار با PC های IBM نصب می‌شد و از قضا، همون دوره IBM تصمیم گرفته بود که لایسنس تولید کامپیوترهای شخصی مشابه کامپیوترهای خودش رو به کمپانی‌های دیگری مثل Dell, Compaq, HP و … هم بفروشه. پس تعداد بیشتر، مصادف شده بود با مصرف بیشتر و محبوبیت بیشتر.

نهایتا، با خودم گفتم که «خب، می‌رم بین محبوبیت توزیع‌های لینوکس جستجو می‌کنم». اونجا بود که فهمیدم چندین توزیع ایرانی مثل پارسیکس (متوقف شده)، کارآمد (متوقف شده) و آریوس (متوقف شده) وجود دارند. در عین حال، فهمیدم این‌ها ویژگی‌های مشترک زیادی دارند. خلاصه که این مورد رو گذاشتم در لیست مطالعه که بعدتر در موردش مطالعه کنم و ببینم که دنیا دست کیه.

خلاصه، مطالعه پیرامون موفقیت سیستم‌های عامل تموم شد. دلم می‌خواست اون موقع وارد جامعه‌ای از برنامه‌نویسان بشم و ازشون یاد بگیرم و انتقال تجربه انجام بشه. به همین خاطر، در وبسایت برنامه‌نویس، ثبت‌نام کردم. اونجا بود که متوجه شدم یکی از اعضا، یک سیستم عامل نوشته به اسم آراکس. برخلاف عمده پروژه‌های سیستم‌عامل که دیده بودم، این یکی توزیع لینوکس نبود بلکه سیستم‌عاملی بود که از بیخ و بن توسعه داده شده بود و با خودم گفتم که پسر! باید با این رفیق شم حتما. اما خب نشد، یعنی نمی‌دونم چی شد ولی احتمالا شلوغی سر ایشون و عدم تمایلشون باعث این شد که دوستی‌ای شکل نگیره.

خلاصه، کمی هم به زبان انگلیسی گشتم. اون موقع مثل الان زبانم خوب نبود و در فهم بسیاری از مطالب، مشکل داشتم. با این حال با گشتن در اینترنت به ویکی توسعه‌دهنگان سیستم‌عامل رسیدم. جایی که هزاران و ده‌ها هزاران نفر دیگر، مشغول توسعه پروژه‌های خودشون بودند و همین باعث شده بود که من یک بهشت برین پیدا کنم. اما اونقدری نگذشت که امیدم ناامید شد. چرا؟ چند مدخل رو که خوندم فهمیدم از صفر نوشتن یک سیستم‌عامل که بتونه کلی کار ریز و درشت انجام بده به این سادگی‌ها هم نیست. که البته اگر نظر خودم رو بخواهید، خیلی خوب شد که این اتفاق افتاد. بعدا در موردش حرف خواهم زد.

به همین خاطر، یک تحقیق بزرگی در مورد سیستم‌عامل‌های متن‌باز موجود کردم که ببینم کدوم بعنوان پایه سیستم‌عامل می‌تونه گزینه خوبی باشه. گنو/لینوکس، بی‌اس‌دی‌ها، هایکو و حتی کولیبری رو چک کردم و به این نتیجه رسیدم که خب، لینوکس بهترین گزینه‌ست! حتی در این میان داشتم به اندروید هم فکر می‌کردم ولی باز پس ذهنم گنو/لینوکس رو داشتم. حالا وقت این بود که ببینم از کدوم یکی میشه یک نسخه شخصی‌سازی‌شده بهتر ساخت.

پیدا کردن توزیع مناسب به عنوان مبنا

خب وقتی که فهمیدم قراره بیس سیستم‌عامل من لینوکس باشه، نیاز داشتم که ببینم کدوم توزیع بهتره. به همین خاطر بارها و بارها، توزیع عوض کردم (و حتی همین امر موجب این شد که هاردم به شدت کند و حتی خراب بشه. بعد از مدتی حتی مجبور به تعویض هارددیسک لپتاپی شدم که اون زمان داشتم). نخستین توزیع، اوبونتو بود. بعدش دبیان. بعد اوپن سوزه، فدورا و … . به همین سبک و سیاق هزاران توزیع رو تست کردم که ببینم کدوم بهتره. البته دروغ چرا، هزاران خیلی مبالغه‌ست. درست‌ترش اینه که هر توزیعی که اسم و رسمی داشت رو نصب و آزمایش کردم که ببینم قضیه چی به چیه.

اما مشکلاتی هم در این میان بودند. یکی از بزرگترین مشکلات پیش روی من، اینترنتی بود که اون زمان داشتیم. اینترنت پرسرعتی بود نسبتا اما دو مشکل اساسی داشت. اولین مشکل محدودیت حجمی بود و خب طبیعتا می‌دونید که بسیاری از این توزیع‌ها حتی موقعی که نصب میشن هم نیازمند اینترنت هستند و همین یعنی باید فاتحه اون حجم رو خوند. مورد دوم هم قطعی‌های زیاد اون خط خاص بود. خلاصه که با تمام این ماجراها، من تهش به چند کاندیدای قدر قدرت رسیدم.

اولین کاندیدا، خود دبیان بود. اصل کاری، پدر اوبونتو. دبیان نصب و راه‌اندازیش هربار من رو پیر می‌کرد البته. به همین خاطر ترجیح دادم که مدتی کنارش بذارم. در همین میان، باز به اوبونتو برگشتم. بعد از بازگشتم به اوبونتو، با لینوکس مینت آشنا شدم. حقیقتا از مفهومی که مینت داشت هم خوشم اومد! فهمیدم که مطابق قوانین خیلی از کشورها، یک تعداد زیادی از نرم‌افزارها مثل فلش‌پلیر، فونت‌های مایکروسافت، کدک‌ها، واین و … امکان «بازتوزیع» یا Redistribute شدن ندارند. اما مینت از این قاعده مستثناء بود. چطور؟ مینت در ایرلند جنوبی ساخته شده. کشور ایرلند هم مثل روسیه و کشور ما، از کشورهاییه که کپی‌رایت درش به اون شکل مطرح نیست و شما احتمالا راحت‌تر می‌تونید این تیپ بازتوزیع‌ها رو انجام بدید.

وقتی دیدم اینطوریه، با خودم گفتم چرا پایه این قضیه مینت نباشه؟ به همین خاطر مینت نصب کردم تا ببینم چی به چیه و دروغ چرا؟ عاشقش شدم. روی مینت گنوم ۳ نصب کردم و کلی باهاش کار کردم و دیدم عجب چیز خوبیه. خلاصه اینجا بود که کاندیداهای من به مینت و اوبونتو، تقلیل پیدا کردند.

پیدا کردن راهی برای پکیج کردن مجدد توزیع شخصی‌سازی شده

اینجا دیگه روی لپتاپ مینت نصب کرده بودم. شخصی‌سازی‌های مختلفی رو روش انجام داده بودم و وقتش رسیده بود که یک پکیج ازش بسازم. در واقع می‌خواستم یک ISO بسازم که بتونم بعدا روی لپتاپ خودم یا کامپیوترهای دیگر به طور کل، نصبش کنم. به همین خاطر از Relinux استفاده کردم (این پروژه تقریبا دو سالی میشه که از رده خارج شده، ولی اون موقع جوان اول ابزارهای ساخت توزیع بود). حالا وقت این رسیده بود که یک مینت خوش رنگ و لعاب با هزاران هزار بسته رنگارنگ، به ISO تبدیل بشه و همین تبدیل همانا و سیستم‌عامل‌ساز شدن من همان!

اما اینجا یه مشکلی پیش اومد. انقدر نرم‌افزارها زیاد بودند که حجم ISO تولیدی توسط Relinux بالای ۴ گیگابایت رفت. اگر این پست رو تشریف ببرید بخونید، توضیح دادم که استاندارد ISO9660 یک محدودیت روی حجم داره و بیش از چهار گیگابایت رو نمی‌تونه در خودش جای بده. همین امر، باعث شد که پروژه رو بکوبم و از اول بسازم. به همین خاطر، دوباره DVD اوبونتو 11.10 رو برداشتم (و در همون حین نخستین بتاهای ۱۲.۰۴ هم داشتند میومدند) و روی لپتاپ نصبش کردم. پس از نصب، تغییراتی روش دادم مثل جایگزینی یونیتی با گنوم، نصب تعدادی نرم‌افزار و جایگزینی تعداد دیگر. این بار شد! این بار واقعا شد و خب خوشحال و خرم بودم.

عکس از توزیع کاپریس است – کاپریس در سال ۹۹ ساخته شد.

انتشار نسخه اول به صورت LTS و اولین اشتباهات

خب در فروردین سال ۱۳۹۱، نخستین نسخه جبیر آمد. یادمه که ده روز قبل از انتشارش حتی این پست رو در فروم اوبونتو ایجاد کردم که خب همونطور که می‌تونید بخونید؛ کم هم حاشیه نداشته. خلاصه اینجا بود که اولین اشتباهات رو متوجه شدم. در این قسمت بیش از این که بخوام پیرامون این که جبیر چه بود مانور بدم، میخوام روی اشتباهات مانور بدم.

اولین اشتباه شاید برمی‌گشت به جهان‌بینی من. اینطور بخوام بگم که این جهان‌بینی این طور بود که اگر در ۱۶ سالگی یک سیستم‌عامل مثل جبیر ساختم، دیگه ته دنیای تکنولوژی و اینام. به قول یه بنده‌خدایی، دچار سندرم «جلوزدگی از خود» شده بودم. خب این مورد در سنین نوجوانی طبیعیه و حتی همین الان باور دارم که نسبت به سن و سال اون زمانم، واقعا کارم خفن بوده ولی نه اونقدری که خودم همیشه فکر می‌کردم. بهرحال در دوران نوجوانی خیلی‌ها دوست دارند کارهای بزرگ کنن و همونطور که در مطلب پیشین عرض کردم، این قضیه باعث شد من بشم اینی که الان هستم.

خلاصه این اشتباه، اشتباه اول بود. اشتباه دوم این بود که فکر می‌کردم اینجا می‌تونم سبک و سیاق اپل رو پیش بگیرم. یعنی چی؟ یعنی که یک سیستم‌عامل مبتنی بر یک سیستم‌عامل دیگر بسازم و بعدش، کدش رو ببندم و نهایتا سخت‌افزارهای مبتنی بر اون سیستم‌عامل رو به ملت بفروشم. نه روی زیرساخت فکری داشتم، نه روی این که پروانه‌ها چه اجازه‌هایی میدند. خلاصه که اینجا کلی اشتباه پشت هم دیدیم. اما تلاش کردم این موارد رو در نسخه ۲ اصلاح کنم.

نسخه ۲، رابط کاربری افسانه‌ای

توزیع آریوس، علاوه بر این که ریمستر از اوبونتو بود دو ویژگی داشت که از سایر توزیع‌های ریمستر؛ متمایزش می‌کرد. یکیش نصاب آفلاین درایورها بود، دیگری این که یک رابط کاربری خیلی خوشگلی هم داشت که خب به شکل یک نشست روی گنوم اجرا می‌شد. در نسخه دوم تصمیم گرفتم چنین تغییری رو ارائه بدم. به همین خاطر، با کمک AWN, Mutter و یک سری تغییر ریز دیگر، یک رابط کاربری نسبتا کاستوم ساختم و اسمش هم گذاشتم Legendary UI یا «رابط کاربری افسانه‌ای». همچنین در کنار اون نسخه، یک ایزو با XFCE هم ارائه کردم که خب در این مقطع، جبیر با دو میز کار داشت عرضه می‌شد.

حقیقتا نسخه ۲ تا حد خوبی ترکوند. به حدی که با این پروژه به جشنواره‌های استانی و کشوری (من‌جمله خوارزمی) راه پیدا کرده بودم. این رو هم اینجا بگم چرا که واقعا نمی‌تونم این رفرنس رو اینجا ندم 😁 در فیلم The Social Network – که داستان ساخت و رشد فیسبوک رو به شکل سینمایی روایت می‌کنه – کرکتر Divya Narendra (یکی از شرکای دوقلو‌های وینکلواس در پروژه Harvard Connection) در مورد مارک زاکربرگ می‌گه که «مارک بزرگترین شخصیت دانشگاه شده بود. اون هم دانشگاهی که نوزده‌تا برنده نول و پونزده‌تا برنده پولتیزر و حتی یک ستاره سینمایی داره». حقیقتا در میان دانش‌آموزان اون مدرسه و حتی شهر بندرعباس من چنین حسی داشتم و همینجا بود که دوباره کمی از خودم جلو زدم. اما این تمام ماجرا نبود. جزییات این بخش رو، در قسمت‌های بعدی این داستان خواهیم خوند.

نسخه ۳ و ۴، مشکل اینترنت و متاع خنده؟

در نسخه ۳، تغییر خاصی نبود جز این که قبل از این که Ubuntu GNOME Remix منتشر بشه، این توزیع با میزکار گنوم عرضه شد (حقیقتا جا داشت این مورد شدیدا بهش اشاره بشه). اگر دوست دارید در مورد این نسخه بیشتر بدونید می‌تونید به این مصاحبه من با لینوکس سیزن مراجعه کنید و کمی با ذهنیت من در اون سال آشنا شید. نسخه ۳ خیلی حاشیه نداشت. در عین حال، خیلی هم سر و صدا و برند نساخت. یک توزیعی بود که نصب می‌شد و خلق‌الله استفاده می‌کردند.

نسخه ۴، برای من خیلی مهم بود. در این حد که حتی اسم نسخه‌ش هم خواستم یک چیز باحال انتخاب کنم و از همین رو، اسم رو گذاشتم Pirates of Galaxy یا «غارتگران کهکشان». در این یکی نسخه خیلی سعی داشتم که همه‌چی رو مینیمال در عین حال شخصی نگه دارم. اما یک مشکل اساسی اینجا پیش آمد. مشکل چی بود؟ مشکل این که اوبونتو باگی داشت که اگر شما اون رو باز دوباره بسته‌بندی می‌کردی، نمی‌تونست کارت شبکه رو درست شناسایی کنه و به اینترنت متصل نمی‌شد. همین موضوع باعث این کامنت از جادی شد:

جادی

خب بخش اول کامنت تذکری بود به دوستی که ظاهرا ادب رو رعایت نکرده بود. بخش دوم هم از نظر من بد نیست، اما نکته مهم برخورد جامعه نرم‌افزار آزاد با این موضوع بود. چرا؟ چون من یادمه حتی سال ۹۶ که خودمم یادم نبود چه کرده بودم تو این سیستم‌عامل، در بعضی جلسات لاگ و بعضی رویدادها این موضوع شده بود متاع خنده! طبیعتا هیچکس خوشش نمیاد کاری که در نوجوانی کرده و حتی کار بدی هم نبوده (ساخت توزیع لینوکس واقعا کار بدی نیست، شاید بیهوده باشه ولی بد، نه!) سوژه خنده یک جمع باشه.

خلاصه اینجا دیگه شد آخرین جایی که جبیر بعنوان یک توزیع گنو/لینوکس عرضه شد و دفترش به پایان آمد. اما حکایتش همچنان باقی ماند.

رفتن سراغ BSD

بعد از جبیر ۴، دیگه تصمیم رو جدی گرفتم. با خودم گفتم لینوکس برای من سیستم بشو نیست :)) در این حد که هرجا بحثی از لینوکس می‌شد، سریعا اشاره می‌کردم به این که در PlayStation 4 از FreeBSD استفاده شده، واتسپ داره FreeBSD استفاده می‌کنه و OpenBSD ایمن‌ترین سیستم‌عامل جهانه و اپل با BSD اپل شد و این‌ها و در عین حال لگدی هم به لینوکس می‌زدم و می‌گفتم این سیستم‌عامل، یک سیستم‌عامل مرده‌ست.

در همین حین، ما باز به تهران برگشتیم و خب کمی سخت بود که روی توسعه جبیر کار کنم چرا که اینترنت درست و درمونی نداشتم، لپتاپم برای کامپایل کردن کد‌های FreeBSD ضعیف بود و کلی داستان و مشکل از این قبیل پیش آمد. خلاصه پس از این که مدتی گذشت و کمی این مشکلات حل شد، موفق شدم که جبیر رو دوباره از نو با کرنل FreeBSD تولید کنم و بعد مدتی حتی اسم کرنل رو از FreeBSD به JabirOS تغییر دادم (که خب این خودش یک اشتباه خیلی خیلی بزرگ محسوب می‌شد چون عملا از پورت‌ها نمی‌شد دیگه استفاده کرد) و کلا در مسیری بودم که با خودم می‌گفتم «دو سال دیگه به اپل رسیدم».

یکی از دلایلش، این بود که من کم کم داشتم وارد مدیای خارجی می‌شدم. مثلا این وبسایت، خبر انتشار جبیر جدید رو کار کرد یا این یکی، با من مصاحبه‌ای ترتیب داد. همه این موارد دست به دست هم دادند تا من خیلی بیشتر از پیش، از خودم جلو بیفتم.

اما خب این موضوعات پشت سر هم، پیش‌دانشگاهی و کنکور و ورود به دانشگاه باعث شدند که کلا بیخیال پروژه جبیر بشم و این مورد باعث شد که ذهنم برای پروژه‌های دیگری که در این سال‌ها انجام دادم بازتر بشه.

این داستان ادامه دارد

فکر می‌کردم شاید این داستان چهار یا پنج قسمت بشه، اما تا اینجا که توضیحاتم رو ارائه کردم، فکر کنم کلا یک مطلب دیگر که کلیت این دو قسمت رو جمع‌بندی کنه و کمی به رفتارهای اطرافیان – بخصوص جامعه نرم‌افزار آزاد – و داستان‌هایی مشابه شرکت در جشنواره خوارزمی و … اشاره کنه، کافی باشه.

خلاصه، دوست دارم ازتون تشکر کنم که تا اینجای مطلب رو خوندید و همراه من بودید. من همیشه دوست داشتم این تجربه رو مکتوب کنم و خب اتفاقات اخیر، موجب این شد که این مطالب مکتوب بشند و در وبلاگ هم به رشته تحریر دربیان.

در نهایت، برای تک‌تک خوانندگان این بلاگ، آرزوی موفقیت و خوشحالی می‌کنم.

 

Share