بایگانی برچسب: s

پروژه OCR فارسی و چالش‌های آن

احتمالا در جریان باشید که مدت نسبتا زیادیه که وارد حوزه پردازش تصویر و بینایی ماشین شدم (برای مثال نقشه راه بینایی ماشین رو می‌تونید از اینجا بخونید) و حتی یک کانال تلگرامی کوچک برای انتقال دانش و تجربه در این زمینه راه انداختم که اسمش رو جامعه بینایی ماشین گذاشتم (که می‌تونید اینجا در موردش بخونید). چند ماه پیش، یکی از دوستانم ایده‌ای مطرح کرد. این ایده، در مورد خوندن پلاک ماشین و ثبتش در یک پایگاه داده با کمک هوش مصنوعی بود (که این پروژه هم انجام شد و اینجا در مورد این پروژه هم توضیح دادم).

پروژه پلاک‌خوان یا Automated Number Plate Recognition که بهش ANPR هم می‌گن، من رو تشویق و تحریک کرد که یک پروژه نویسه‌خوان نوری یا همون OCR فارسی هم پیش ببرم. اما پیش‌برد پروژه OCR تا حد زیادی به تعویق افتاد چرا که درگیر توسعه محصول در استارتاپی بودم. اما از عید نوروز ۱۴۰۱ خیلی جدی‌تر به پیاده‌سازی یک OCR فارسی درست و حسابی فکر کردم. گرچه این پروژه رو تا حد زیادی به عبارتی Hold کردم، اما خب نتایج جالبی تا الان ازش به دست آمده که حیف بود در این مطلب وبلاگ در موردش ننویسم.

پروژه OCR فارسی و چالش های آن

شروع پروژه: درک کارکرد OCR

قبل از این که بخواهیم یک سیستم OCR برای زبان فارسی پیاده کنیم؛ باید درک کنیم که OCR چیه و چه کار می‌کنه و چرا مهمه که برای زبان‌های مختلف داشته باشیمش. پروسه OCR یا تشخیص نویسه نوری که البته بهش نویسه‌خوان نوری هم گفته میشه، پروسه‌ایه که طی اون، متنی از داخل یک عکس استخراج میشه و می‌تونیم بعدتر با ابزارهای واژه‌پرداز یا پردازش متن، با اون متن کار کنیم. برای این که این مثال رو بهتر درک کنیم، فرض کنیم که یک قوطی دارو داریم و حالا می‌خواهیم ببینیم که ترکیبات دارو چطوریه. چه کار می‌کنیم؟

اولین کاری که می‌تونیم بکنیم اینه که برچسب روی بسته دارو رو بخونیم. اما گاهی پیش میاد که ما دقیقا نمی‌تونیم درست از این چیزا سر در بیاریم (به هرحال هرطور بررسی کنیم، من مثلا برنامه‌نویسم و نه شیمی‌دان یا داروساز و خب طبیعیه که نتونم اون دیتا رو بفهمم). حالا فرض کنید یک اپلیکیشن روی گوشی همراهمون نصب داریم که فقط کافیه یک عکس از جعبه دارو بهش بدیم. اون تمام این دیتا رو به ما میده. حالا چطوری؟ اول میاد نوشته روی دارو رو به متن تبدیل می‌کنه و متن رو در دیتابیس خاصی جستجو می‌کنه.

خب، الان فهمیدیم OCR چیه و چی کار می‌کنه. حالا وقتشه که بریم سراغ پروژه من. این که پروژه چی شد و به کجا رسید. یک مسیر جذاب طی شد اما خب این مسیر جذاب یه جاهایی هم تو دست‌انداز افتاده. چون پروژه هنوز تمام نشده و خیلی مونده تا به نتیجه خوبی برسه، ترجیح دادم «هرچی که تا الان انجام شده» رو در این مطلب باهاتون به اشتراک بذارم.

پروسه انجام پروژه OCR فارسی

فاز اول: تصمیم‌گیری

اولین قدم در انجام هر پروژه‌ای، نوشتن یک نقشه راه برای اون پروژه‌ست. اولین کاری که من کردم این بود که بیام بررسی کنم که سوادم در چه حده و چه ابزارهایی در اختیار دارم. گذشته از اون، اصلا پروژه OCR فارسی چقدر می‌تونه برای جامعه فارسی‌زبان موثر واقع بشه.

خب در این مساله، من از آخر به اول رفتم. اولین سوال این بود که چرا به یک OCR فارسی نیاز داریم؟ موضوع اینجاست که حفظ زبان، در گرو چه چیزهاییه. شاید چند قرن پیش، شعر فارسی چیزی بود که زبان فارسی رو حفظ کرد (دیگه فکر نکنم کسی باشه که ماجرای شاهنامه رو ندونه 😁). بعد از اون، نوشتن سفرنامه و حکایات روشی بود که در کنار شعر، به حفظ زبان کمک کرد. سال‌ها بعد مطبوعات و جراید و همچنین رمان و … باعث حفظ زبان فارسی شدند. در دنیای امروز هم کارهایی مثل توسعه فونت، توسعه مدل‌های هوش مصنوعی و همچنین پردازش زبان فارسی و …؛ روشی برای حفظ زبانه.

حالا که می‌دونم یکی از دلایلی که OCR فارسی رو توسعه می‌دم، اینه که از زبان فارسی حفاظت و صیانت کنم (و قطعا وقتی از حروف فارسی استفاده کنم برای زبان‌های دیگری مثل کُردی، عربی و … هم قابل استفاده خواهد بود) نیاز بود بررسی کنم که چه ابزارهایی در اختیار دارم. اولین ابزاری که به نظرم رسید، بهترین زبان برنامه‌نویسی دنیا بود (😁) یعنی پایتون! خب بررسی پایتون رو در یک بخش جداگانه توضیح میدم ولی فعلا پایتون رو در نظر داشته باشید. در پایتون PyTorch و OpenCV هم داریم که خب یعنی هر آنچه برای کارهام نیاز بود در یک پکیج داشتم.

و اما مهم‌ترین بحثی که پیش میاد اینه. سوادم در چه حده؟ این بخش چالش‌برانگیز کاره. چرا که ممکنه تحت تاثیر اثر دانینگ کروگر باشیم و خودمون رو بسیار بیشتر از چیزی که هستیم بدونیم. خوشبختانه در حوزه پردازش تصویر و بینایی ماشین مدتهاست که این اثر رو رد کردم و می‌دونم که سوادم دقیقا کجاست و بیش از سوادم اگر بخوام کاری کنم، لازمه که مطالعاتم رو بیشتر کنم. حالا واقعا سوادم در چه حده؟ بعد از یک بررسی دیدم که آشنایی خوبی با پایتون و لایبرری OpenCV دارم. بعد از اون، کمی هم از الگوریتم‌های یادگیری ماشین و یادگیری عمیق سردرمیارم. با الگوریتم‌های شناس مثل YOLO هم که آشنایی دارم و همه این‌ها کافیه که برم سراغ پیاده‌سازی.

فاز دوم: ابزارهای مورد استفاده برای پیاده‌سازی پروژه OCR فارسی

در این بخش با هم بررسی خواهیم کرد که چه ابزارهایی برای پیاده‌سازی OCR نیاز بود. در واقع، این پلنی بود که من چیدم برای استفاده از ابزارها.

  • پایتون: همونطور که گفتم پایتون، بهترین زبان برنامه‌نویسی دنیا؛ حداقل در این قسمت ماجرا بود. پایتون زبان راحتیه و رسیدن به نتیجه درست و حسابی بهش نسبتا آسون. به همین خاطر پایتون رو انتخاب کردم. گذشته از این بسیاری از ابزارهای هوش مصنوعی و یادگیری ماشین هم در پایتون قابل استفاده هستند.
  • OpenCV: ابزار OpenCV یا Open Computer Vision که معرف حضور همه هست. این ابزار، کلی تابع و کلاس و … برای پردازش تصویر با متدهای کلاسیک یادگیری ماشین رو در خودش جای داده و گذشته از اون، پایه بسیاری از کتابخانه‌های مدیریت و ویرایش تصاویر دیگر مانند Pillow هم هست.
  • زرنویس: ابزار زرنویس (لینک) ابزاری بود که چند وقت پیش برای نوشتن متن فارسی روی تصاویر به کمک Pillow نوشتم.
  • PyTorch: کتابخانه PyTorch هم که باز معرف حضور هست. یکی از بهترین ابزارها برای پیاده‌سازی پروژه‌های یادگیری عمیق.
  • الگوریتم YOLOv5: الگوریتم YOLOv5 (لینک) هم یکی از بهترین الگوریتم‌های تشخیص اشیا یا Object Detection محسوب میشه و خب با کارهای Ultralytics کار باهاش شدیدا راحت هم شده.
  • ابزار LabelImg: ابزار LabelImg (لینک) هم یک ابزار مناسب برای برچسب زدن به تصاویر برای YOLOv5 (و در کل الگوریتم یولو) به حساب میاد.

پروژه OCR فارسی و چالش های آن

فاز سوم: جمع‌آوری داده‌های مناسب برای پروژه و آموزش مدل

من همیشه در پروژه‌های هوش مصنوعی، علم داده، یادگیری ماشین و … یک حرف ثابت رو تکرار می‌کنم. اون حرف چیه؟ این که جمع‌آوری و پیش‌پردازش داده‌ مورد استفاده در پروژه، سخت‌ترین بخش کاره. در این پروژه هم همینطور بود. اولین گامی که داشتم این بود که بیام و خود پروژه رو فازبندی کنم. چطوری؟ اینطوری که بیام کار رو بخش به بخش ببرم جلو و برای هربخش، جدا پلن بچینم. به همین خاطر به چند بخش ریز تقسیمش کردم که دقیقا بن‌بستم در یکی از این بخش‌ها بود.

  • بخش اول – تشخیص اعداد فارسی: در این بخش تا حد زیادی تنبلی کردم و به جای استخراج اعداد از متون، با استفاده از زرنویس و چند فونت فارسی آزاد، حدود صدتا تصویر که در هر کدوم اعداد ۴-۵ رقمی بودند تولید کردم. بعد از اون، اعداد رو لیبل کردم و بعد از لیبل کردن اون‌ها، رفتم سراغ ترین کردن مدل YOLOv5 با استفاده از داده‌ای که از اعداد به دست آورده بودم. این مدل خوب کار کرد، گرچه روی چندین فونت خاص خیلی خوب کار می‌کرد و روی چندین فونت اصلا کار نمی‌کرد. این موارد رو بعدتر در قسمت های آتی توضیح خواهم داد.
  • بخش دوم – تشخیص حروف فارسی: این بخش، یکم چالشی‌تر شد. چطور؟ از اونجا که رندم تولید کردن کلمات فارسی که تمامی حالات حروف درشون باشه (مثلا هم ک توش باشه هم کـ هم ـکـ) کار آسونی نبود. به همین خاطر کاری که کردم چه بود؟ این بود که از دیتاست شتر (لینک) استفاده کردم و حدود ۱۰۰ تا تصویر رو جدا کردم و شروع کردم لیبل زدن و ترین کردن مدل. اینجا نتیجه بهتر بود و می‌تونست فونت‌های بیشتری رو تشخیص بده. گرچه در این مورد خاص، یک سری حروف مثل ث و ژ با دقت کمتری شناخته می‌شدند.
  • بخش سوم – تشخیص بلاک‌های کلمات: دقیقا جایی که چالش داشتم، اینجا بود. لیبل زدن متون طولانی یکم دردسرش زیاد بود. به همین خاطر ابتدا اومدم متون رو «خط به خط» لیبل زدم و خط‌ها رو جدا کردم. بعد از اون با استفاده از Contour های موجود در عکس کلمات رو جدا کنم و به مدل تشخیص حروف بدم که خب اون هم خودش یکم داستان‌های خاص خودش رو داشت. به هرحال، تا اینجای کار، مدل تشخیص اعداد و حروف به خوبی کار می‌کرد و نیاز بود این اتفاق هم بیفته. اما خب متاسفانه این اتفاقه افتادنش یکم سخت بود. نمی‌گم ناممکن اما خب سخته. به همین خاطر، فعلا پروژه در همین مرحله hold شده.

جمع‌بندی و نتایج پروژه

در نهایت ببینیم چه چیزهایی الان داریم و چه چیزهایی نداریم؟ تا نتایج پروژه رو بتونیم بهتر و بهتر و بهتر بررسی کنیم 😁 اول از همه ببینیم چیا رو داریم؟ خب در حال حاضر دو مدل خوب برای تشخیص اعداد و حروف فارسی داریم. این مدلها دارن با دقت‌های خوبی کار می‌کنن اما نیاز دارند که یکم بهتر بشن (یعنی در اینجا نیاز داریم که کمی Fine Tuning روی مدل‌های فعلی یا مدل‌های YOLOv5 و … انجام بدیم) و مدلی برای تشخیص خط و کلمه داریم که درست کار نمی‌کنه. در واقع بخواهیم بهتر ببینیم: چیزی که داریم تشخیص نسبتا با دقت حروف و اعداده و چیزی که نداریم تشخیص کلمات به صورت بلاکه.

پروژه OCR فارسی و چالش های آن

کارهای آینده

در این بخش بهتره به این فکر کنیم که چه کارهایی در آینده میشه برای بهبود این پروژه انجام داد. در لیست زیر به این مسائل می‌پردازیم که دقیقا چه کارهایی لازمه انجام بشه.

  • تغییر مدل: یا نوشتن مدل از بتدا با روش‌های Probabilistic یا استفاده از متدهای Instance segmentation
  • تشخیص بهتر بلاک‌های کلمات و شماره (یا با استفاده از Object Detection یا استفاده از سایر متدها)
  • اضافه کردن هسته این کار به یکی از OCR های مشابه مانند EasyOCR یا PaddleOCR

سخن نهایی

در پایان باید از شما بابت زمانی که گذاشتید و این متن نسبتا بلند بالا رو خوندید، متشکرم. در حال حاضر، شما می‌تونید کدهایی که برای این پروژه نوشتم رو اینجا بخونید و اگر لازم بود، کمکی به پروژه کنید. اگر هم نه که می‌تونید از مدل‌ها و دفترچه‌های ژوپیتری که قرار دادم استفاده کنید. همچنین، اگر دوست دارید مطالبی مشابه این وبلاگ بخونید می‌تونید به ویرگول من (لینک) مراجعه کنید.

 

Share

ایده هایی برای پروژه های بینایی ماشین

چندی پیش، در مورد پیش‌نیازهای یادگیری بینایی ماشین در همین وبلاگ نوشته بودم (لینک) و بعد از اون هم در مطلبی در ویرگول، در مورد این که چرا موجودیتی به اسم «جامعه بینایی ماشین» رو راه انداختم (لینک) صحبت کردم. پس از انجام چندین پروژه و تولید چندین محتوا پیرامون این موضوع، امروز در این پست قراره که ایده هایی که شما می‌تونید در پروژه های بینایی ماشین و پردازش تصویر خودتون به کار بگیرید رو بررسی کنیم.

توجه داشته باشید که در این پست، فرض رو بر این گذاشتیم که شما با هوش مصنوعی، پایتون، بینایی ماشین و … آشنایی لازم و کافی رو دارید و حالا قصد دارید یک پروژه جدی باهاش انجام بدید اما نمی‌دونید باید چی کار کنید. اگر آشنایی ندارید هم مشکلی نیست، می‌تونید این مطلب رو صرفا برای ایجاد علاقه و یا رفع کنجکاوی بخونید 😁

ایده های مرتبط با تشخیص چهره

تشخیص چهره، همیشه یکی از پرطرفدارترین شاخه‌های پردازش تصویر و بینایی ماشین بوده است. چرا که با استفاده از تشخیص چهره، می‌توانیم عملیات جالبی انجام دهیم و پروسه‌های زیادی از یک کار بزرگتر را، خودکار کنیم. همچنین می‌توانیم امنیت خانه و محل کار و … را نیز با استفاده از تشخیص چهره تامین کنیم.

در لیست زیر، تعدادی از پروژه‌های مرتبط با تشخیص چهره رو برای شما فهرست کرده‌ام:

  • حضور و غیاب مبتنی بر چهره
  • دوربین امنیتی (به این شکل که وقتی شخص ناشناسی وارد حریم دوربین شد از طریق ایمیل یا SMS و … به شما اطلاع بده)
  • قفل هوشمند ( به شکلی که اگر شما رو دید در رو باز کنه و در غیر این صورت، یک سیستم مانند دزدگیر یا سیستم امنیت خونه رو راه‌اندازی کنه)
  • تشخیص حالت و احساسات چهره
  • تشخیص خواب‌آلودگی (مثلا در یک کلاس این پروژه می‌تونه کاربردی باشه).

همه ایده‌های بالا، به سادگی قابل انجام هستند. فقط کافیه که کار با کتابخانه‌ها و تئوری پردازش تصویر رو بلد باشید. شاید دو سه روزه بتونید یکی از این پروژه‌ها رو به ثمر برسونید 😁

ایده‌ های مرتبط با تشخیص کرکتر

نتایج آزمایش روی دیتاست آزمایشی

تشخیص نوری نویسه یا Optical Character Recognition که به اختصار به اون OCR هم گفته می‌شه، یکی از شاخه‌های پرطرفدار دیگر در حوزه بینایی ماشین می‌تونه به حساب بیاد. پروژه‌هایی که در این حوزه انجام می‌شن به شدت کاربردی هستند و طبیعیه که در حوزه‌های مختلفی کاربرد خواهند داشت. در اینجا تعدادی از ایده‌هایی که می‌تونید روش کار کنید رو اینجا فهرست کردم:

  • تشخیص و استخراج شماره پلاک (که پیش‌تر در موردش نوشتم – لینک)
  • تشخیص و حل مسائل ریاضی/فیزیک (که این هم پیش‌تر در مورد نوشتم – لینک)
  • تشخیص دست‌خط فارسی
  • تشخیص خط نستعلیق (و در کل خوشنویسی) فارسی
  • تشخیص نسخه پزشکی (نکته جالب اینه که در نسخ پزشکی، بسیاری از خط‌خطی‌هایی که می‌بینید در واقع روش مصرف و دوزاژ دارو هستند، که طبق کدگذاری خاصی نوشته می‌شن).

البته باید این نکته رو هم عرض کنم خدمتتون که دنیای OCR خیلی گسترده‌ست. تقریبا هرجایی که شما با نوشتن سر و کار داشته باشید، می‌تونید از OCR هم اونجا استفاده کنید. خیلی چیزا اینجا به خلاقیت و نیازهای خودتون برمی‌گرده. اگر ایده‌ دیگری داشتید، می‌تونید در بخش نظرات همین مطلب با من به اشتراک بذارید.

ایده های مرتبط با پزشکی

هوش مصنوعی در علم پزشکی، جایگاه خاصی در سال‌های اخیر داشته. چرا که همه دانشمندان کامپیوتر و همچنین پزشکی، دریافتند که با استفاده از راه‌حل‌های هوشمند، می‌تونند به حد قابل توجهی، خطاهای پزشکی رو کاهش بدند. همچنین تحقیقات دارو و واکسن هم به شدت سریع‌تر می‌تونن انجام بدند. برای مثال، همین دنیاگیری ویروس کرونا که در سال ۲۰۱۹ آغاز شد و کماکان ادامه داره رو بررسی کنیم، بارها از این که از هوش مصنوعی برای پیدا کردن ترکیبات دارویی موثر بر ویروس استفاده شده، صحبت کردند. همچنین در پروسه ساخت واکسن هم بسیاری از مراحل رو به ماشین سپردند و به هوش ماشینی اعتماد کردند. شاید یکی از دلایلی که واکسن این بیماری انقدر سریع ساخته شد، استفاده از همین راهکارهای هوشمند در تولید بوده.

بینایی ماشین هم استثناء نیست و طبیعتا می‌تونه خیلی به کمک افراد بیاد. در این بخش، تعداد زیادی از ایده‌هایی که می‌تونه به پزشک‌ها در شناخت بهتر مشکلات بیمارهاشون کمک کنه رو فهرست کردم و خب بد نیست اگر شما هم سراغش برید و سعی کنید یکیش رو پیاده کنید (این بخش می‌تونه برای دانشجویان مهندسی پزشکی و پزشکی؛ بسیار مفید باشه)

  • تشخیص نوع تومور مغزی (تصویر این بخش، پروژه‌ای که خودم انجام دادم)
  • تشخیص رتینوپاتی دیابتی در اشخاص مبتلا به دیابت
  • تشخیص MS و مراحل مختلف اون بر اساس MRI
  • تشخیص سلول‌های سرطانی
  • تشخیص میزان درگیری ریه در بیماری‌های تنفسی (مانند COVID-19)
  • تشخیص ناهنجاری‌های پوستی
  • تشخیص آسیب‌های استخوان
  • تشخیص آسیب‌دیدگی‌ها و پوسیدگی‌های دندان

طبیعتا این‌ها، همه کارهایی که می‌تونیم در حوزه پزشکی با کمک بینایی ماشین و پردازش تصویر انجام بدیم نیستن و این دامنه می‌تونه به شدت گسترده‌تر باشه. طبیعیه که گستردگی این دامنه به خلاقیت خودتون و نیازهاتون برمی‌گرده. همچنین طبیعتا اگر شما دانشجوی مهندسی پزشکی یا رشته پزشکی و رشته‌های مرتبط باشید، احتمالا ایده‌های بهتری خواهید داشت.

سایر حوزه‌ها

چندین و چند حوزه دیگر هست که خب مثل باقی حوزه‌های پوشش داده شده در این مطلب، نمیشه ایده‌های پروژه‌های بینایی ماشین و پردازش تصویرشون رو فهرست کرد. به همین خاطر، توضیح اجمالی راجع به هر کدوم می‌دم تا شما ببینید که کدوم حوزه رو بیشتر دوست خواهید داشت و در کدوم حوزه ممکنه بتونید ایده‌پردازی بهتری داشته باشید.

تشخیص حرکت یا Action Detection

این حوزه به طور خاص، می‌تونه برای کارهایی مثل تشخیص و ترجمه همزمان زبان اشاره (لینک)، تشخیص حرکات ورزشی و یا تشخیص «نیت» افراد بشه. برای مثال، می‌تونیم سیستمی بسازیم که حرکات بعدی فرد در یک نبرد تن به تن (مثل مسابقه بوکس) رو پیش‌بینی کنه و به مربی‌ها و نوآموزهای اون رشته اطلاع بده.

خودروهای خودران

خودروهای خودران یا Self-Driving که پیش‌تر هم ازشون در همین وبلاگ صحبت کرده بودم (لینک) می‌تونن با استفاده از بینایی ماشین و پردازش تصویر، تابلوهای راهنمایی، رفتار سایر رانندگان، موانع در مسیر و … رو تشخیص بدند. این حوزه البته پیچیدگی زیادی داره اما کار کردن روی بخش‌های مختلفش می‌تونه برای یادگیری جوانب مختلف ماجرا جذاب و جالب و مفید باشه.

مصرف انرژی

حوزه انرژی هم حوزه جالبی می‌تونه برای پروژه‌های بینایی ماشین باشه. برای مثال OCR ای که بتونه دیتای کنتور گاز/برق رو به متن تبدیل کنه و اون رو با یک مرکز محاسبه قیمت، چک کنه و قیمت رو به ما اعلام کنه. همچنین می‌شه عکس‌های حرارتی از خانه‌ها و … تهیه کرد و با استفاده از بینایی ماشین دقیقا بررسی کرد که کجاها انرژی بیشتری داره از دست میره و … .

این پروژه‌ها به خودی خود شاید جالب به نظر نرسن اما ترکیبشون با IoT و هوشمندسازی در سطوح دیگر، طبیعتا می‌تونه جذاب و حتی پول‌ساز هم باشه.

کشاورزی

این هم گفتن نداره، شما کافیه که یک سری عکس هوایی از زمین‌های کشاورزی داشته باشید. احتمالا خیلی راحت بتونید سیستمی توسعه بدید که آفات رو شناسایی کنه. همینطور می‌تونید نوع خاک و … هم از روی این عکس‌ها طبقه‌بندی کنید و پیشنهاد بدید که چه محصولی در این زمین کشت بشه بهتره. در حوزه مصرف انرژی هم می‌تونید یکی از پروژه‌ها رو بردارید بیارید اینجا و ازش بهره‌برداری کنید. چی از این بهتر؟

ضمن این که امنیت زمین کشاورزی و گلخانه، بررسی نور و رنگ و … هم می‌تونن اینجا کاربردی باشند.

جمع‌بندی مطلب

در این مطلب، ایده‌هایی که می‌تونید بعنوان یک پروژه تفریحی یا جدی پیاده‌سازی کنید رو بررسی کردیم. همچنین این ایده‌ها، به جز این که می‌تونن رزومه خوبی برای شما بسازند طبیعتا می‌تونن پایه یک کسب و کار و یا یک استارتاپ باشند که شانس خوبی برای به پول رسیدن داره. به همین خاطر هم ممنون میشم اگر هر کدوم از این ایده‌ها رو پیاده‌سازی کردید در بخش کامنت همین مطلب در موردش بنویسید و به من اطلاع بدید تا ببینم چه کردید.
همچنین لازم به ذکره که اگر دوست دارید مطالب فنی/علمی دیگری از من بخونید، می‌تونید به ویرگول من هم مراجعه کنید. در پایان هم بابت وقتی که گذاشتید، ازتون تشکر می‌کنم و امیدوارم در آینده باز هم بتونم در این وبلاگ، مطلب بنویسم.

 

Share

خواندن پلاک خودرو با کمک YOLOv5 و پایتون

مدت‌ها پیش، من شروع به نوشتن پیرامون بینایی ماشین و پردازش تصویر کردم (برای مثال، یکی از نتایجی که از این موضوع گرفتم راه‌اندازی جامعه بینایی ماشین بود) و کم کم تلاشم بر این شد که هوش مصنوعی و یادگیری عمیق و یادگیری ماشین و … هم وارد ماجرا کنم چرا که دونستن OpenCV و به طور کلی بینایی ماشین، چیز خاصی نیست و دانش خاصی به ما اضافه نمی‌کنه. البته اشتباه نکنید، این که شما یک ابزار خوب مثل OpenCV و کار باهاش رو بلد باشید، خیلی هم خوبه اما کافی نیست.

خلاصه پس از مدتی، شروع کردم به مطالعه الگوریتم‌های مختلفی که برای تشخیص اشیا و یا مکان‌یابی اشیا نوشته شده بودند، اونها رو مطالعه کردم و یکی یکی این ابزارها رو سعی کردم امتحان کنم تا ببینم هرکدوم چطور دارند کار می‌کنند و … . در این میان با YOLO و مفهومی که داشت، آشنا شدم ولی مشکلاتی سر راه بود که در همین مطلب بهشون اشاره میشه. اما نسخه ۵ یولو، یه جورایی شد رفیق راهم (که خب توضیح دادم چرا دوستش دارم) و در بسیاری از پروژه‌ها مثل حل مسائل ریاضی و همچنین تحلیل مدارات الکتریکی، کمک بسزایی به پیش‌برد پروژه کرد.

حالا اگر نوبتی هم باشه، نوبت یک پروژه جدید و باحال دیگره که با YOLOv5 انجام بشه. در اینجا لازمه اشاره کنم که مدل‌های هوش مصنوعی صرفا ابزار هستند و گاهی ما ممکنه اصلا نیازی به هوش مصنوعی برای حل مساله نداشته باشیم. مورد بعدی این که ما از ابزار چطور، کجا و چگونه استفاده کنیم خودش امر مهمیه و عموم مقالات مهندسی، پایان‌نامه‌های رشته‌های مهندسی و …؛ همه در این تلاش هستند که یا این ابزارها را بهینه کنند یا این که روش مناسبی برای استفاده از این ابزارها پیدا کنند.

پروژه‌ای که این بار انجام دادم چه بود؟ این پروژه این بار سامانه تشخیص پلاک خودرو با کمک YOLOv5 است که در نگاه اول، به نظر چیز ساده‌ای می‌رسه اما در عمل خیلی ساده نیست و در حین پیاده‌سازی، نیاز داشتم که ساده‌ترش کنم. اما بذارید ایده کلی رو با هم بررسی کنیم. ایده کلی ما این بود که سیستمی داشته باشیم که حضور و غیاب به کمک پلاک خودرو را ممکن کند. حالا این مورد کجاها می‌تونه استفاده بشه؟ خیلی جاها. پارکینگ‌های عمومی، جاهایی که خودروها تا ثبت نشده باشند نمی‌تونن وارد باشن، پلیس راهنمایی و رانندگی و … .

در این پست، با هم به تفصیل به بررسی این پروژه می‌پردازیم و می‌بینیم که این پروژه بینایی ماشین چطور انجام شده. سعی کردم که مطلب تا حد خوبی فرمتی مشابه تحقیقات و پایان‌نامه‌های دانشگاهی هم داشته باشه تا دوستانی که نیازمند نوشتن چنین مطلبی هستند هم بدون تغییرات زیاد بتونن از مطالب این پست خاص استفاده کنند.

نتیجه آزمایش مدل

طرح کلی مساله

مساله کلی ما در اینجا اینه که نرم‌افزاری توسعه بدیم که بتونه نوشته روی پلاک خودروهای ما رو بخونه و اون رو با محتوایی که در یک دیتابیس خاص داریم، تطابق بده. در اینجا ما می‌تونیم سناریویی فرضی داشته باشیم به این شکل که «فرض کنیم یک پارکینگ داریم که خودروها باید قبل از حضور، پلاکشون رو ثبت کنند و موقع ورود، پلاک خوانده میشه و چنانچه مطابقتی بیش از ۷۰٪ با حداقل یکی از پلاک‌های درون دیتابیس پارکینگ داشت؛ مجوز ورود صادر خواهد شد». این سناریوی فرضی به ما کمک می‌کنه که در ادامه، بهتر پیاده‌سازی رو انجام بدیم.

پس مشخصا ما نیاز به سیستمی داریم که بتونه تصویر از پلاک دریافت کنه، محتوای متنی تصویر رو استخراج کنه و اون رو با متونی که پیش‌تر در یک دیتابیس ذخیره کردیم تطابق بده و خروجی مورد نظر ما (مجوز ورود) رو صادر کنه. برای این که بتونیم فرایندی که می‌خواهیم رو ساده‌تر کنیم، در اینجا چند مورد لحاظ شده:

  • محتوای متنی پلاک فقط محدود به اعدادیه که درون پلاک داریم.
  • برای سادگی بیشتر پروژه، بخش سخت‌افزاری سیستم در نظر گرفته نشده.
  • برای سادگی باز هم بیشتر، از قسمت دیتابیس و تطابق چشم‌پوشی کردیم.

در واقع، پیاده‌سازی پیش روی شما صرفا پیاده‌سازی از نویسه‌خوان نوری (OCR) و در حقیقت قسمت مرتبط با بینایی ماشین و YOLOv5 در این پروژه بوده که خود همان هم، بخش زیادی از این پروژه رو شامل می‌شد.

کارهای پیش تر انجام شده

در این بخش، کارهایی که پیش‌تر در این زمینه انجام شدند رو با هم بررسی می‌کنیم. چرا که در بخش انتخاب ابزار احتمالا نیاز به این داشته باشیم که به این قسمت برگردیم و مواردی رو بررسی کنیم. به هرحال در طی جستجوهای انجام شده توسط شخص من، دو پروژه خیلی نظرم رو جلب کردند که در ادامه به معرفی اون‌ها می‌پردازم.

پلاک‌ خوان دیوار

وبسایت یا اپلیکیشن دیوار برای خیلی از ماها، نام آشناییه. خیلی از افراد هستند که از طریق این اپلیکیشن اقدام به خرید و فروش خودرو هم می‌کنند و برای تامین امنیت صاحبان خودرو در این پلتفرم، اقدام به طراحی و تولید مدل مشابهی کردند که بهشون کمک کنه تا بتونند پلاک‌ها رو با قالب مناسب وبسایت دیوار، جایگزین کنند تا همه قادر به دیدن پلاک خودروها نباشند. دوستانی که در این پروژه در دیوار همکاری داشتند خوشبختانه مراحل کارشون رو خیلی دقیق و جالب در این پست ویرگولیشون، توضیح دادند و به نظرم بد نیست که همینجا توقف کوچکی کنید و پست این دوستان رو مطالعه کنید؛ سپس برگردید و ادامه این پست رو بخونید.

مراحل اولیه تشخیص پلاک در این پروژه
مراحل اولیه پروژه مورد بحث در همین پست – تلاش برای بازسازی پلاک‌خوان دیوار

پروژه تشخیص پلاک با پایتون (با استفاده از OpenCV و KNN)

این یکی پروژه هم یکی از پروژه‌های خوبی در زمینه بینایی ماشین و تشخیص پلاکه که یکی از کاربران آپارات، با پیروی از یک شخص خارجی – که در یوتوب کار مشابهی انجام داده – پیاده‌سازیش کرده. یک ویدئوی دو ساعت و نیمه که به نظرم ارزش دیدن و فکر کردن داره.

در بخش بعدی، اشاره خواهم کرد که چرا این روش رو اتخاذ نکردم و ترجیح دادم که از YOLOv5 استفاده کنم. برای دیدن این ویدئو، می‌تونید از این لینک استفاده کنید.

انتخاب ابزار و تکنولوژی

در این بخش، به تفصیل قراره تمامی ابزارهایی که پیش روی ما بود رو بررسی کنیم. در واقع این یکی از روتین‌های تحقیقات علمیه که قبل از توضیح کامل ابزاری که استفاده کردیم، توضیح بدیم چرا از یک سری از ابزارها، استفاده نکردیم. این مورد به افرادی که بعد از ما قراره روی اون موضوع کار کنند کمک می‌کنه تا اول سراغ ابزارهایی که قدیمی شدند یا به هر دلیلی «به درد نخور» هستند نرن و دوم اگر قرار باشه ابزار متفاوتی از ما رو انتخاب کنند، بتونن یکی از همین‌ها رو بررسی کنند (حالا ممکنه اصلا کل بررسی سر به درد نخور بودن ابزار باشه!).

استفاده از Tesseract

تسرکت یکی از نرم‌افزارهای آزاد مشهور در زمینه OCR محسوب میشه که امتیازات ویژه خودش رو هم داره. برای مثال شاید بشه گفت بزرگترین امتیازش اینه که بدون مشکل روی همه سیستم‌عامل‌های مرسوم دنیا نصب و اجرا میشه و مهم نیست شما مک داشته باشید یا ویندوز یا گنو/لینوکس؛ به سادگی می‌تونید اجراش کنید و ازش استفاده کنید. مورد بعدی که باعث میشه افراد به سمت تسرکت برن هم اینه که کتابخونه‌ای برای استفاده مستقیم در پایتون داره و این خودش یک امتیاز بزرگه که نرم‌افزاری که به صورت stand-alone اجرا میشه رو بشه با یک wrapper ساده وارد زبان برنامه‌نویسی مورد علاقمون کنیم.

در عین حال تسرکت مدعیه که زبان‌های مختلفی – من جمله فارسی – رو پشتیبانی می‌کنه و اینجا می‌خوایم دلیل عدم استفاده از این ابزار رو دقیقا در همینجا پیدا کنیم. تسرکت، نیاز داره که با فونت‌های مختلف آموزش داده بشه و پیدا کردن فونتی مشابه فونت‌های مورد استفاده در پلاک خودروهای ایران، کاری تقریبا ناممکنه. البته بعضی از تایپ‌فیس‌ها مثل تایپ‌فیس فونت رویا تقریبا به فونت مورد استفاده در پلاک خودروهای ایران نزدیکه و شاید بشه باهاش کاری کرد. اما این بحث آموزش تسرکت و نتیجه نگرفتن احتمالی باعث خط خوردن تسرکت از لیست شد.

استفاده از KNN

خود کتابخانه OpenCV تابعی برای آموزش یک طبقه‌بند KNN یا K-Nearest Neighbor ارائه می‌کنه که در ویدئویی که در بخش قبل لینک دادیم هم استفاده شده. این مورد هم مشکلات خاص خودش رو داشت و از لیست حذف شد. یکی از واضح‌ترین دلایل این بود که ممکن بود این روش خاص، در اعداد شبیه به هم کمی مشکل ایجاد کنه. در کل، علیرغم این که الگوریتم K نزدیک‌ترین همسایه، الگوریتم مورد اطمینانی در یادگیری ماشین کلاسیک محسوب میشه، ریسک خطای مدل نهایی رو هم می‌تونه بالا ببره.

استفاده از EasyOCR

کتابخانه EasyOCR یکی از محبوب‌ترین کتابخانه‌ها در میان مهندسین بینایی ماشین در دنیاست. یکی از دلایلش اینه که با سرعت خوبی (بخصوص با داشتن GPU) می‌تونه متون رو تشخیص بده و از همه مهم‌تر، دور متون مورد نظر ما Bounding Box قرار بده. این کتابخانه هم زبان‌های زیادی مثل انگلیسی، آلمانی، نروژی و … رو پشتیبانی می‌کنه اما نقطه قوتش نسبت به Tesseract اینجاست که در زبان‌های فارسی و عربی هم بدون نیاز به استفاده از فونت و …؛ می‌تونه تشخیص خوبی بده.

با این وجود، مدلی که EasyOCR ازش استفاده می‌کنه هنوز به خوبی برای زبان فارسی fine-tune نشده و پروژه حال حاضر رو نمی‌تونه به سرانجام برسونه. به همین دلیل، این ابزار هم از لیست ابزارهای مورد استفاده در پروژه ما، خط می‌خوره. البته این هم باید اشاره کرد که EasyOCR نرم‌افزاری آزاده که میشه بهش کمک کرد و بهبودش بخشید (روشش رو اینجا می‌تونید پیدا کنید).

استفاده از سیستم‌ها و سرویس‌های OCR ایرانی

در سال‌های اخیر، با توجه به این که افراد زیادی به خوندن کتاب‌ها و جزوه‌های الکترونیکی و اسکن‌شده روی آوردن، خیلی از شرکت‌ها و گروه‌های فعال در زمینه متن‌کاوی و … هم بیکار نبودند و سیستم‌های OCR خوبی توسعه دادند که به صورت خاص، برای زبان فارسی کار می‌کنند.

اما دو مشکل بزرگ اینجا داشتیم. اولین مشکل این که اکثر این سرویس‌ها آنلاین هستند و خیلی از کاربران نهایی این پروژه (مثل یک سازمان دولتی) احتمالا حاضر به این نمیشه که داده‌های خودروهاش و کارمندانش رو به یک سرور شخص ثالث ارسال کنه. مشکل دوم هم این بود که اکثر نسخه‌های آفلاین گرون‌قیمت هستند. البته شاید بشه مشکل سومی هم اینجا لحاظ کرد و اون اینه که خیلی‌هاشون امکان این که در یک کد پایتونی بشه ازشون استفاده کرد هم فراهم نمی‌کنند. پس این گزینه هم کاملا از لیست ما خط خورد.

توسعه CNN اختصاصی

این روش همیشه برای من نقش پلن ب رو داره که اگر مدلی مثل YOLOv5 برای نیازم پاسخگو نبود، سراغش بیام. اما چرا در این پروژه سراغش نرفتم؟ چون که توسعه برای OCR می‌تونست به شدت زمان، هزینه و انرژی مصرف کنه و حقیقتا چون این پروژه قرار نبود پروژه پول‌ساز باشه یا برای هدفی مثل پایان‌نامه و … انجام بشه، ارزش این که شبکه عصبی اختصاصی براش توسعه بدیم رو نداشت.

استفاده از YOLOv5

در نهایت، لازم بود که از مدلی مثل YOLOv5 استفاده بشه برای این که بتونیم OCR مخصوص پلاک رو توسعه بدیم. چرا YOLOv5 و چرا سایر نسخه‌های یولو نه؟ پیش‌تر این مورد رو به تفصیل توضیح دادم اما توضیح کوتاه ماجرا میشه سهل‌الوصول بودن نتیجه transfer learning و fine-tuning این مدل خاص. این مدل، یعنی YOLOv5 به سادگی می‌تونه روی سیستم شخصی من (مکبوک پرو آخر ۲۰۱۹ با سیستم عامل مک) و روی گوگل کولب اجرا بشه. همچنین انتقالش به سایر سیستم‌ها هم راحت انجام میشه و از این نظر، خیالم می‌تونست راحت باشه.

گذشته از بحث سخت‌افزار و پلتفرم، YOLOv5 به شدت سریع و با دقته، و این مورد می‌تونه خودش یک امتیاز مثبت بزرگ برای استفاده از این مدل خاص در کاری مثل پروژه خواندن پلاک با YOLOv5 باشه!

جمع‌آوری و پیش‌پردازش داده مورد نیاز

بعد از این که ابزارها و تکنولوژی‌های مورد نیازمون رو پیدا کردیم، لازم بود تا داده‌های مورد نیاز پروژه هم پیدا کنیم. اولین و ساده‌ترین راه (مطابق این مطلب) این بود که خودمون دست به کار شیم و از پلاک خودروها، عکاسی کنیم. اما این قضیه می‌تونه دردسرساز بشه چرا که خیلی‌ها خوششان نمیاد که کسی از ماشینشون عکاسی کنه. به همین دلیل، در اینترنت جستجو کردم و به دیتاست مورد استفاده در این مطلب رسیدم. در این دیتاست ۳۱۷ عکس از پلاک خودروهای ایران وجود داره که این خودش عالیه! یک حجم خوب از پلاک خودرو که می‌دونیم دردسری هم برای ما ایجاد نمی‌کنه.

پس از این که داده‌های مورد نظر خریداری و دانلود شد، نوبت به لیبل زدن بود. لیبل‌های ما اعداد ۰ تا ۹ بودند و گذشته از اون، برای این که داده تستی کافی داشته باشیم و مراحل پیاده‌سازی سریع‌تر پیش بره، فقط ۷۵ تا عکس رو با کمک labelImg لیبل کردیم.

پیاده‌سازی پروژه

پس از این که ایده کلی، ابزار و داده برچسب‌زده‌شده رو داشتیم، نوبتی هم باشه نوبت آموزش دادن YOLOv5 برای اینه که کار ما رو به درستی انجام بده. حقیقتا، YOLOv5 و ابزارهای مشابه، خودشون یک دور آموزش دیدند و ما فقط به قولی اون‌ها رو fine-tune می‌کنیم که کاری که ما بخواهیم رو انجام بدن (در نظر بگیرید که ما در دوران ابتدایی و راهنمایی خیلی چیزا رو یاد گرفتیم، در دبیرستان رفتیم سراغ ریاضی و تجربی و اختصاصی اون‌ها رو یاد گرفتیم و بعد در دانشگاه مثلا مهندسی خوندیم که یک فرم خاص‌تر از ریاضیه. دقیقا مشابه همین فرایند اینجا برای آموزش YOLOv5 هم داره صورت می‌گیره) و الان فقط کافیه که دیتا و کدهای مورد نیازمون رو در یک سیستم مناسب پروژه‌های هوش مصنوعی بارگذاری کنیم و سپس مراحل آموزش رو طی کنیم.

داده‌های ما روی Google Colab آپلود شدند چرا که آموزش YOLOv5 نیازمند داشتن GPU است. بعد از اون، آموزش به این صورت شکل گرفت که هفتصد و پنجاه epoch (یا نسل) طول کشید، سایز batch ما ۳۲ بود، اندازه تصویر به ۴۱۶ د ۴۱۶ پیکسل تغییر کرد (اسکریپتی که برای آموزش YOLOv5 توسط تیم Ultralytics ارائه شده خودش امکان تغییر سایز رو فراهم کرده) و مدل پایه مورد استفاده yolov5m بود که با ۲۱.۲ میلیون پارامتر آموزش داده شده. پس از حدود ۳ ساعت و ۴۰ دقیقه، مدل ما آماده بود و نیاز داشتیم که تستش کنیم.

نتایج آزمایش

نتیجه آزمایش روی دیتاست آموزش

نتیجه آزمایش مدل

همین عکس که در ابتدای مطلب هم ازش استفاده شده، عکسیه که در دیتاست آموزشی موجود بود و درستی کار مدل رو تایید می‌کرد. جدول زیر هم میزان دقت رو به درستی به ما نشون میده:

جدول میزان دقت مدل - دیتاست آموزشی

نتیجه آزمایش روی دیتاست آزمایشی

نتایج آزمایش روی دیتاست آزمایشی

در جدول زیر هم به صورت مرتب شده می‌تونیم میزان دقت این مدل رو هم ببینیم. همچنین با یک تابع ساده، پلاک رو به شکل درستش (مبتنی بر ستون xmin) مرتب کردیم تا با پلاک اصلی تطبیق بدیم:

داده استخراج شده از پلاک - دیتاست آزمایشی

جمع‌بندی و نتیجه‌گیری

در اینجا لازمه که پروسه‌هایی که طی شده رو یک بار دیگه بررسی کنیم تا به یک جمع‌بندی روی پروژه برسیم:

  • ابتدا تصمیم گرفتیم سیستمی طراحی کنیم که حضور و غیاب یا رفت و آمد رو بتونه مبتنی بر پلاک خودروهای حاضر در یک محل خاص، بررسی کنه.
  • سپس تصمیم اولیه رو با حذف پروسه دیزاین سخت‌افزاری و همچنین حذف حروف مورد استفاده در پلاک ساده‌سازی کردیم.
  • پس از ساده‌سازی، ابزارهای متنوعی رو مطالعه کردیم و سپس YOLOv5 رو به عنوان ابزار اصلی خودمون انتخاب کردیم.
  • دیتاستی رو تهیه کردیم و برچسب زدیم.
  • مدل YOLOv5 رو مطابق نیاز و با داده‌های خودمون آموزش دادیم.

در کل، این پروسه گرچه پروسه نسبتا وقت‌گیر و سختی بود، اما نتیجه به دست آمده واقعا راضی‌کننده و خوبه. در حال حاضر پروژه ما در حالی قرار داره که می‌تونه به سادگی با ارتباط با یک سیستم سخت‌افزاری، کاری که براش در نظر گرفته شده رو انجام بده. البته هنوز ضعف‌هایی متوجه این پروژه هست که در بخش بعدی در موردشون بحث خواهیم کرد.

کارهای آینده

در این قسمت، کارهایی که در آینده میشه برای این پروژه انجام داد رو با هم یک بررسی اجمالی می‌کنیم:

  • توسعه سیستم برای خواندن حروف وسط پلاک (چالش‌های خاصی در این زمینه وجود داره، مثلا حرف ژ در پلاک خودرو معمولا به شکل ویلچر چاپ میشه)
  • توسعه سیستم برای خواندن پلاک‌های غیرشخصی (پلاک‌های عمومی و تاکسی عموما زرد، پلاک وزارت دفاع آبی، پلاک سپاه و نیروی انتظامی سبز پررنگ، ارتش سبز خاکی، دیپلماتیک آبی آسمانی و پلاک خودروهای دولتی قرمز هستند)
  • توسعه سیستم برای تشخیص و خواندن پلاک‌های منطقه آزاد
  • توسعه سیستم برای تشخیص و خواندن پلاک‌های گذر موقت
  • توسعه سیستم سخت‌افزاری و قرار دادن مدل‌های هوش مصنوعی در سخت‌افزار مناسب

مجوز نشر

این پست وبلاگ، تحت پروانه مستندات آزاد گنو یا GNU Free Document License منتشر شده و بازنشر و استفاده از محتویاتش کاملا آزاده. فقط توجه لازم داشته باشید که دیتاستی که برای آموزش استفاده شده آزاد نیست و این آزادی در استفاده شامل بخش‌هایی از این مطلب میشه که مسولیتش با منه (به طور کلی هرچی که شما در این پست خوندید)

سخن آخر

این پست برخلاف پست‌های دیگر این وبلاگ به شدت طولانی شد و از بابت این که وقت زیادی برای خوندنش گذاشتید، واقعا از شما متشکرم. در پایان جا داره از شما دعوت کنم که به ویرگول من هم سر بزنید تا اونجا موارد فنی و تجربیات دیگر من رو بخونید. همچنین، اگر این مطلب برای شما مفید بود کافیه که روی تصویر زیر کلیک کنید و من رو به یک فنجان قهوه به انتخاب خودتون مهمان کنید 🙂

Share

با هوش مصنوعی، ریاضی ۱ رو پاس کن!

دقیقا دو هفته پیش، در نسخه انگلیسی وبلاگ در مورد YOLOv5 نوشتم (لینک) و توضیح دادم که چرا این مدل هوش مصنوعی برای تشخیص اشیاء رو دوست دارم (و حتی چرا شما باید دوستش داشته باشید) و خب طبیعتا دوست داشتم یک پروژه خیلی خیلی ساده و در عین حال باحال هم با این مدل انجام بدم.

ایده‌های زیادی در سر داشتم. برای مثال ایده بازی Red Light – Green Light که در سریال اسکوییدگیم همه دیدیم. اما این ایده علیرغم خوب بودنش، آنچنان کاربردی نبود. پس تصمیم من برآن شد که یک نرم‌افزار دیگر توسعه بدم. نرم‌افزاری که هم چالش داشته باشه، هم در نهایت یک کاربرد درست ازش بشه درآورد.

نمی‌دونم شما یادتونه یا نه، اما نرم‌افزار سیمبولب، دروانی خیلی خاص و معروف شد. به همین خاطر، تصمیم من هم این شد که سیمبولب رو دوباره بسازم و بعد از این که نتایج مورد نظرم رو گرفتم در موردش وبلاگ بنویسم. پس این شما و این ماجرایی که من داشتم تا این نرم‌افزار رو بسازم.

نتیجه حل مساله توسط هوش مصنوعی

گام اول: طرح مساله

در هر پروژه‌ای، اولین گام اینه که مطرح کنیم چه مشکلی رو باید حل کنیم. یا به قول دنیل کوهن Look for the pain. خب دردی که ما اینجا به دنبال حل کردنش بودیم، چی بود؟ این که بسیاری از دانش‌آموزا و دانشجوها سر ریاضی عمومی یا Calculus مشکل دارند. این مشکل ریشه‌ش کجاست؟ برای من شخصا مهم نیست که این ریشه رو بررسی کنم (البته به معنای این نیست که نظری در موردش ندارم، اما از حوصله این مطلب خارجه).

حالا درد این که بسیاری از دانشجوها و دانش‌آموزها مشکل دارند، چطور میشه براشون یک مسکن خوب تجویز کرد؟ بعنوان یک مهندس هوش مصنوعی، یا بهتر بگم مهندس بینایی ماشین در ذهنم این ایده چرخید و اون این بود که:

یک نرم‌افزار هوش مصنوعی وجود داشته باشه که از روی عکس مساله، پاسخ نهایی یا راه‌حل رو به افراد بده.

و این پروژه، در نظر پروژه بسیار بسیار بزرگی بود اما در نهایت، پروژه ساده‌ای شد. در ادامه، در راهی که طی شد توضیح خواهم داد.

گام دوم: انتخاب ابزار

گام دوم برای من، انتخاب ابزار بود. اول از همه می‌خواستم برم سراغ OCR های آماده برای تشخیص مسائل پارامتری مثل x و y و … . اما بعد دیدم که اینجا علاوه بر حروف و اعداد، نشانه‌ها هم هستند. ضمن این که به شکلی باید توان و … هم تشخیص داد. پس کمی پروژه رو نگه داشتم تا به ابزارها فکر کنم.

بعد از مدتی تحقیق و تفحص، به دارک‌نت رسیدم که برای ترین کردن YOLOv3 و YOLOv4 استفاده میشه و خب دارک‌نت مشکلات زیادی هم با خودش به همراه داره. برای مثال کاملا در سی‌پلاس‌پلاس نوشته شده و روی سیستم‌های مختلف باید از نو کامپایل بشه. با CPU درست کار نمی‌کنه. کامپایل کردنش روی مک یا ویندوز دردسره و انتقال دادنش به Google Colab هم می‌تونه تا حد زیادی مشکل‌ساز بشه.

بعد از اون الگوریتم YOLOv5 رو کشف کردم. تقریبا همه مراحل کاملا پایتونی پیش می‌رفت و این عالی بود. کم کم دیدم که میشه بعد از ترین کردن قضیه، از pytorch هم استفاده کرد و اشیاء رو تشخیص داد و از اون بهتر این بود که در تشخیص اشیاء، می‌شد خروجی pandas هم گرفت که مختصات شیء مورد نظر به همراه لیبلش در اون data frame خاص موجود بودند. پس به این شکل تشخیص این که ما با چه چیزی روبرو هستیم هم ساده‌تر از گذشته می‌شد.

وقتی این ابزار رو با چند چیز مختلف تست کردم، نوبت این رسید که در این پروژه حتما ازش استفاده کنم. اما این تمام ماجرا نیست. دقیقا وقتی که سمت OCR ماجرا هندل می‌شد، یک بحث خیلی مهم می‌موند. بحث این که چطوری باید مساله حل بشه؟ برای حل مساله هم از Wolfram Alpha گفتم کمک می‌گیرم.

خب حالا نوبتی هم باشه، نوبت اینه که داده‌های مورد نیاز رو جمع کنیم. قبل‌تر در مورد راه‌هایی که شما می‌تونید برای جمع‌آوری داده استفاده کنید، صحبت کردم و می‌تونید از اینجا بخونیدش.

نمونه داده‌های پروژه
نمونه داده‌های استفاده شده در این پروژه

گام سوم: جمع‌آوری داده

برای جمع‌آوری داده‌ها، نیازمند این بودم که روی چند سطح مختلف (وایت‌برد، کاغذ A4 و همچنین کاغذ خط‌دار) و با چند دست‌خط مختلف، مسائل ریاضی رو بنویسم. بعد از نوشتن مسائل ریاضی، از دوستانم خواهش کردم که روی صفحات مختلف و همچنین وایت‌برد، مسائل ریاضی رو بنویسند.

بعد از این که مسائل ریاضی رو روی این سطوح و با دست‌خط‌های مختلف داشتم، نوبت عکاسی ازشون بود. از هر بار نوشتن، چندین عکس از چند زاویه گرفتم. چرا که زوایای مختلف باعث میشن توزیع نور هم در تصاویر یکسان نباشه و این خودش یک مرحله data augmentation رو برای من کاهش می‌داد.

حالا یه حجم زیادی داده دارم، باید بعدش چی کار کنم؟ پاسخ ساده‌ست. الان زمانیه که ما وارد مرحله پیش‌پردازش داده میشیم.

گام چهارم: پیش‌پردازش داده

بعد از این که ما داده‌های مورد نیاز خودمون رو جمع کردیم، نیازمند اینیم که داده رو پیش‌پردازش کنیم. به طور کلی، پیش‌پردازش داده به پروسه‌ای گفته میشه که در اون قراره داده ها تمیز بشن، تغییر کنند (یا به قولی data augmentation رخ بده)، برچسب زده بشن و داده‌های غیرلازم (یا همون نویز) دور ریخته بشه.

اولین مرحله برای من اینجا، تکه تکه کردن عکس بود. شاید فکر کنید که برای تکه تکه کردن عکس، از ابزار خاصی استفاده کردم یا کدی زدم. باید بگم که خیر، ابزارم دقیقا ادوبی فتوشاپ و ابزار Slice بود. بعدش با قابلیت save for web آمدم و عکس‌های قطعه‌قطعه شده رو ذخیره کردم. پس از ذخیره نهایی عکس‌ها، نیاز بود که عکس‌ها برچسب زده بشن.

برچسب‌ها، در مرحله آموزش مدل، به ما کمک می‌کنند که اشیاء رو در تصاویر پیدا کنیم. این برچسب‌ها در مراحل بعدتر به کمک ما میان تا بتونیم مسائل یافت شده رو به ولفرام‌آلفا بدیم تا برامون حلش کنه. پس لازم بود که این اتفاقات بیفته.

پروسه برچسب‌زنی

گام پنجم: آموزش مدل YOLOv5

و اما گام یکی مونده به آخر دقیقا این بود که مدل آموزش داده بشه. آموزش این مدل با pytorch به شدت سرراست و راحته و کلش اجرا کردن یک دستور در ترمیناله. باز با این حال، مشکلات عدیده‌ای داشتم. برای مثال روی لپتاپ شخصی چون GPU مناسب نداشتم، آموزش به شدت طولانی می‌شد. آموزش رو به Google Colab منتقل کردم و چون پلن رایگان داشتم، اونجا هم یک سری داستان جدیدتر پیش آمد. اما بهرحال هرطور که شد، مدل آموزش داده شد و نتایج خوبی هم ازش گرفتم.

در مورد آموزش مدل و نحوه کار اون به زودی محتوای آموزشی جدیدی تولید خواهد شد که به تفصیل در اون توضیح میدم چطور می‌تونید YOLOv5 رو خودتون آموزش بدید و باهاش کار کنید. در حال حاضر، توضیح مراحل آموزش تا حد زیادی از حوصله این پست وبلاگ خارجه.

و گام نهایی: آزمایش مدل و نوشتن رابط ولفرام آلفا

پس از این که مدل آموزش داده شد، نیاز بود چندین خط کد پایتون نوشته شه برای چند منظور. اول این که وزن‌هایی که لازم بود از مدل آموزش‌داده‌شده، لود کنه. دوم این که یک عکس رو از ورودی بگیره و مراحل inference رو روش انجام بده و در نهایت، اگر کاربرخواست اون رو بفرسته به ولفرام آلفا و مرورگر رو براش باز کنه.

برای این مرحله، برخلاف باقی مراحل وقت زیادی نذاشتم ولی با این حال کدش (بدون وزن‌ها) در گیت‌هاب شخصی من موجوده و می‌تونید نگاهی بندازید. البته که به زودی گیت‌هاب بروزرسانی میشه و شما قادر خواهید بود که وزن‌ها رو هم دانلود کنید. اما فعلا وزن‌ها در دسترس نیستند.

در نهایت هم برای این که عملکرد قضیه رو ببینید، این ویدئو کوتاه رو می‌تونید تماشا کنید که هم inference رو تست می‌کنیم هم حل مساله با ولفرام رو:

جمع‌بندی و مشکلات این نرم‌افزار

این پروژه به عنوان یک پروژه تفریحی، واقعا تفریح خوب و سالمی بود و کلی یادگیری برای من داشت. یادگیری دقیق‌تر و عمیق‌تر YOLOv5، یادگیری دقیق‌تر و عمیق‌تر PyTorch و از همه مهم‌تر درگیر شدن با چند مساله و به قولی، دردهای دنیای واقعی. از نتیجه کاملا راضی بودم و هستم، اما فکر نکنم در آینده این پروژه خیلی برام راضی‌کننده باشه.

احتمالا بعد از مدتی به این پروژه برگردم و بزرگترین مشکلش – یعنی شباهت زیاد ورودی‌ها به هم – رو طور دیگری هندل کنم. برای این که ببینیم یه چیزی در پوزیشن توان یه چیز دیگه قرار گرفته یه چاره‌ای بیاندیشم و … . خلاصه که راه برای بهبودش زیاده و این بهبود‌ها رو شخصا پیگیر هستم که در این پروژه اعمال کنم. شاید هم لازم باشه داده ورودی رو افزایش داد یا حتی مدل مورد استفاده رو عوض کرد.

در نهایت، از شما بابت وقتی که برای خوندن این مطلب گذاشتید، ممنونم. امیدوارم که این مطلب مفید واقع شده باشه و به دردتون خورده باشه. ضمن این که اگر به این تیپ مسائل و مطالب علاقمند هستید، می‌تونید من رو در ویرگول هم دنبال کنید و اونجا هم مطالبم رو بخونید. اگرچه در ویرگول عمده مطالبم مرتبط با بیزنس، موفقیت و ایناست.

در نهایت از شما خواهش می‌کنم که اگر این مطلب براتون مفید بود، یک قهوه به انتخاب خودتون مهمانم کنید تا موقع نوشیدن قهوه به یادتون باشم و از این دست مطالب، بیشتر تولید کنم.

Share

نقشه راه بینایی ماشین برای مبتدیان

مدتی میشه که در جامعه بینایی ماشین، دارم به صورت خیلی جدی در مورد بینایی‌ماشین و ملزوماتش، تولید محتوا می‌کنم. از همین رو، تصمیم گرفتم که در قالب این پست وبلاگی، در مورد این که بینایی ماشین چیه و کجا کاربرد داره و چرا باید بلدش باشیم و از کجا باید شروع کنیم؛ بنویسم.

این مطلب، اصلا و ابدا قرار نیست «آموزش» باشه و همونطوری که ابتدای مطلب گفتم، صرفا «نقشه راه» برای شماست.

بینایی ماشین، بینایی کامپیوتری

بینایی ماشین چیه؟

بینایی ماشین در واقع یکی از شاخه‌های علوم کامپیوتر محسوب میشه که هدفش، اینه که پردازش و درک تصاویر دیجیتال رو ساده‌تر کنه. بینایی ماشین در ترکیب با هوش مصنوعی، رباتیکز و سایر شاخه‌های مرتبط با علوم و یا مهندسی کامپیوتر، می‌تونه به بهبود زندگی افراد کمک شایسته‌ای کنه.

شاخه‌های زیادی برای بینایی ماشین داریم اعم از تشخیص چهره، تشخیص متن، خواندن نویسه‌های نوری (OCR)، واقعیت افزوده، واقعیت مجازی و … . هرکدوم از این شاخه‌ها، تخصص‌های خاص خودش رو می‌طلبه که در ادامه مطالب بهش خواهیم پرداخت.

کجا کاربرد داره؟

کاربردهای بینایی ماشین، می‌تونه در بسیاری از جاها باشه. نمونه‌ش مثلا همین پروژه‌ای که من زده بودم:

اندازه‌گیری اشیا با بینایی ماشین

همونطور که می‌بینید، این پروژه برای اندازه‌گیری اشیاء مختلف با کمک بینایی ماشین ساخته شده بود. همچنین، یک پروژه دیگر این بود که حروف اشاره (که مورد استفاده ناشنوایانه) رو تشخیص میداد. در دنیای امروز تقریبا در هر جایی که کوچکترین استفاده‌ای از تصویر میشه، مثل ویرایش و ساخت تصویر؛ تشخیص اقلام درون تصویر و …؛ بینایی ماشین داره در ابعاد وسیعی استفاده میشه.

چرا باید بلدش باشیم؟

بایدی وجود نداره. یادگیریش به عنوان یک مهارت، کاملا میتونه شما رو به یک پروژه خفن، کار یا پول نزدیک کنه. حتی اگر قصد ندارید در این زمینه کار کنید هم می‌تونید با یادگیری بینایی ماشین به سادگی برای خودتون یک تفریح سالم بسازید.

از کجا شروع کنیم؟

خب مهم‌ترین بخش این مطلب دقیقا همینجاست که قراره با هم یاد بگیریم که چه پیش‌نیازهایی برای یادگیری بینایی ماشین وجود داره. هر پیش‌نیاز رو با هم کمی بررسی خواهیم کرد 🙂

  • برنامه‌نویسی پایتون: از اونجایی که پایتون زبان ساده‌ایه و اکثر آدمها دنبال یادگیریشن (و این یعنی منابع آموزشی خیلی خوبی براش هست) بهتره که پایتون رو تا حد خوبی یاد بگیرید. حد خوب، یعنی حدی که شما بتونید یک نرم‌افزار ساده ولی کاربردی رو باهاش توسعه بدید (مثلا یه ماشین حساب یا چیزی مشابه اون).
  • مقدمات یادگیری ماشین: بینایی ماشین به شکلی یکی از زیرمجموعه‌های هوش مصنوعی محسوب میشه. این نشون میده که اگر شما به الگوریتم‌ها و تئوری یادگیری ماشین و … آشناییت کافی داشته باشید، می‌تونید در این فیلد هم پیشرفت قابل توجهی کنید. گذشته از این، یادگیری ماشین می‌تونه بهتون در «هوشمندسازی» بیشتر نرم‌افزارهای بینایی ماشین کمک کنه.
  • آشنایی مختصر با جاوا یا سی++: از اونجایی که پایتون یک زبان مفسری محسوب میشه، ممکنه خیلی‌جاها (مثلا در یک برد آردوینو) نتونیم مستقیم ازش استفاده کنیم و همچنین استفاده ازش پیچیدگی خاصی به همراه داشته باشه؛ بهتره یک زبان سطح پایین‌تر مثل سی++ هم کمی آشنا باشیم. همچنین اگر قصد این رو دارید که اپلیکیشن تلفن همراه بنویسید که از بینایی ماشین استفاده می‌کنه، بد نیست دستی هم در جاوا داشته باشید.
  • آشنایی با سخت‌افزارها و سیستم‌های نهفته (Embedded Systems): یکی از کاربردهای عظیم بینایی ماشین، فعالیت‌های Surveillance می‌تونه باشه (البته این که این فعالیت‌ها بد یا خوب هستند بحث جداییه). یکی از نمونه‌هاش می‌تونه «سیستم حضور و غیاب با تشخیص چهره» باشه، یا حتی «دفترچه تلفن هوشمند» و … 🙂 به همین دلیل، بد نیست که کمی با سیستم‌های نهفته و سخت‌افزارهایی مثل Jetson Nano و Raspberry Pi آشنایی داشته باشید.
  • آشنایی با لینوکس: این واقعا نیاز به توضیح خاصی نداره، روایت داریم اگر لینوکس بلد نیستی، برنامه‌نویس نیستی 🙄

لیست بالا به شما کمک می‌کنه که محکم‌تر در زمینه بینایی ماشین، قدم بردارید. هرجاش رو که بلد نباشید می‌تونید با جستجو پیداش کنید و یاد بگیرید و از یادگیری، لذت ببرید 🙂

سخن آخر

از این که وقت گذاشتید و این مطلب رو خوندید ممنونم. در آینده، در قالب پست‌های وبلاگ در مورد پروژه‌های بینایی ماشین و سایر پروژه‌های باحال، صحبت خواهم کرد. امیدوارم که این مطلب مفید فایده واقع شده باشه و وقتی که براش گذاشتید ارزشش رو داشته باشه.

Share