بایگانی برچسب: s

خانواده‌ مدل‌های زبانی Xei برای اجرای روی دستگاه شما آمده‌است!

مدتی پیش، پروژه‌های مختلفی مثل مارال یا جبیر رو با هدف انتشار و ساخت یک مدل زبانی بزرگ با همون LLM (مخفف Large Language Model) شروع کرده بودم اما بحث این مدل‌ها و شاید همزمان شدن انتشار این‌ها با نسخه‌های جدیدی از پلتفرم‌های مانی و آتلیه، کمی باعث شده بود که از هدف اصلی دور بشیم.

در همین مدت، مدل ۸ میلیارد پارامتری هرمز منتشر شد که خب یک بازخورد بسیار خوب از جامعه فارسی‌زبان تونست بگیره. مدل هرمز، از طریق وبسایت هاگینگ‌فیس، کاملا در دسترس شماست و می‌تونید ازش استفاده کنید.

اما هرمز شد بخشی از یک پروژه بزرگتر، چرا که کمی دقت به بزرگان این حوزه، نشون از این بود که تقریبا همه شرکت‌های خوب و موفق در این حوزه، به جای این که «یک مدل» منتشر کنند «یک خانواده مدل» منتشر کردند که خب باید از این قضیه تا حدی الگوگیری می‌شد.

تصمیم به ساخت یک خانواده از مدل‌ها

از تولیدکنندگان بزرگ و تجاری مدل‌های جنریتیو که بگذریم، بسیاری از شرکت‌هایی که مدل‌های اوپن سورس تولید می‌کنن و نام‌داران این عرصه هم هستند (مثل Alibaba Cloud, DeepSeek, Mistral و حتی Meta) عموما به یک عدد مدل کفایت نمی‌کنند.

مدل‌هایی که این شرکت‌ها تولید می‌کنند عموما در یک «خانواده» قرار داره و این خانواده هم بر اساس تعداد پارامتر، توانایی استنتاج (یا همون Reasoning) توانایی بینایی ماشین (یا همون vision) و …، تعیین می‌شن. برای مثال یکی از مدل‌های معروف این حوزه که LLaMA نام داره و توسط شرکت متا ساخته شده، معمولا در یک نمونه کوچک (۷ یا ۸ میلیارد پارامتری)، یک نمونه متوسط (۱۱ یا ۱۳ پارامتری) و نمونه‌های بزرگ (۷۰ میلیارد پارامتر و بیشتر) تولید میشه.

اما خب یک مورد دیگری هم که به چشمم خورد، کاری بود که DeepSeek با R1 کرده بود. در واقع اومده بودن مدل‌های کوچکتر (از یک و نیم میلیارد تا هفتاد میلیارد پارامتر) رو با روش Distillation درست کرده بودند.

در واقع مدل‌هایی مثل LLaMA, Qwen, Mistral و … رو با داده‌هایی که از مدل دیپ‌سیک ۶۷۱ میلیارد پارامتری به دست آورده بودند، مجدد آموزش دادند که در اختیار افراد بیشتری قرار بگیره.

همین موضوع، باعث شد که به این فکر بیفتیم که در سال ۱۴۰۴ به جای این که هفته‌ای یک LLM ریلیز کنیم 😁 یک خونواده خوب از LLMها برای تمام فصول ریلیز کنیم که باز هم از DeepSeek V3 و ترین‌ کردن QLoRA و مرج کردن روی اون شروع شد.

اسم Xei از کجا میاد؟

پیش از این که بخواهیم در مورد خود مدل‌ها و روش اجراشون صحبت کنیم، کمی در مورد اسم توضیح بدم.

ریاضیدانان ایرانی مثل خوارزمی، موقعی که معادلات خاصی رو حل می‌کردند از عبارت «شیء» بعنوان مجهول استفاده می‌کردند. وقتی اروپایی‌ها آثار این دانشمندان رو به زبان‌های خودشون ترجمه کردند، درک کردند که این «شیء» در واقع مجهوله و به جای این که Object (یا چیزی معادلش) ترجمه‌ش کنند، برای حفظ حالت مجهولش از عبارت xei استفاده کردند که بعدا شد xای که در معادلات مختلف استفاده می‌کنیم.

یکی از دلایل این اسم، اینه که هم تلفظش برای داخلی‌ها راحته هم خارجی‌ها و هم یک بکگراند جالب ایرانی داره.

اما حالا مدل‌ها چی هستند؟ چرا انقدر این خونواده از مدل‌ها مهم بود؟

اهمیت خانواده مدل Xei

یکی از دلایل اصلی ساخته شدن Xei این بود که این مدل‌ها بتونن هم روی دستگاه‌های کاربر نهایی مثل من و شما اجرا شن هم روی زیرساخت‌های بزرگ و صنعتی.

در واقع هم تعدادی مدل On Device داشته باشیم و هم تعداد زیادی مدل برای استفاده Enterprise و به همین خاطر ۷ تا مدل در این خونواده، قرار گرفته که در ادامه بررسی می‌کنیم.

مدل‌های Xei

  • مدل ۰.۱ میلیارد پارامتری، مبتنی بر لاماست و صرفا زبان انگلیسی می‌فهمه و می‌تونه در کارهایی مثل کدنویسی به شما کمک کنه.
  • مدل ۰.۵ میلیارد پارامتری، مبتنی بر Qwen ساخته شده. با این که از دیتای چندزبانی درش استفاده شده ولی بهترین عملکرد رو روی انگلیسی داره و همچنان برای کارهایی مثل کدنویسی و نوشتن ایمیل، مناسبه.
  • مدل ۲ میلیارد پارامتری که مبتنی بر Gemma 2 ساخته شده و محمد شجاعی عزیز زحمت ساختش رو کشیده، اولین مدلیه که به خوبی فارسی رو درک می‌کنه و می‌تونه به زبان فارسی به شما پاسخ‌های درست بده.
  • مدل ۸ میلیارد پارامتری که در واقع همون هرمز قدیمی خودمونه و مبتنی بر Command-R از Cohere ساخته شده.
  • مدل ۳۲ میلیارد پارامتری که باز هم مبتنی بر Command-R ساخته شده و نتایج بهتر و دقیق‌تری می‌تونه تولید کنه.
  • مدل ۱۰۰ میلیارد پارامتری که باز هم مبتنی بر Command-R ساخته شده 😁
  • و در نهایت مدل ۶۷۱ میلیارد پارامتری که مبتنی بر DeepSeek V3 ساخته شده و از معماری MoE بهره می‌بره.

و خب همونطوری که می‌بینید، تا مدل ۸ میلیارد پارامتری به سادگی روی اکثر رایانه‌های شخصی حتی بدون کارت گرافیک NVIDIA قابل اجراست ولی نمونه ۳۲ و ۱۰۰ و ۶۷۱ نیاز به منابع بیشتری دارند که در ادامه به اون‌ها هم می‌پردازیم.

چطوری به Xei دسترسی پیدا کنیم؟

اگر می‌خواهید مستقیما به سمت مدل ۶۷۱ میلیارد پارامتری بریم، کافیه که به این سرویس برید، یک حساب کاربری بسازید و شروع به چت کنید.

ولی اگر دوست دارید که این مدل رو روی سیستم شخصی خودتون اجرا کنید، می‌تونید از کتابخونه Ollama نسخه مناسب رو دانلود کنید (با کارت ۲۰۵۰ تا مدل ۳۲ میلیاردی قابل اجراست، گرچه بهترین نتیجه مربوط به همون ۸ میلیاردیه).

در آموزش‌های بعدی، نحوه راه‌اندازی و کار کردن با Ollama رو هم قرار خواهم داد که ببینید چطور میشه به سادگی یک سری مدل خوب هوش مصنوعی رو روی کامپیوتر شخصی، اجرا کرد.

جمع‌بندی و سخن آخر

در حال حاضر، پروژه Xei بعنوان یکی از پرچم‌داران مجموعه مانی که تحت برند Aqua Regia فعالیت می‌کنه قراره مدتها آخرین و مهم‌ترین پروژه ما باشه. از همین رو، پست بلاگ مربوط بهش هم زود نوشته شد تا این که بتونیم روی اون مانور لازم رو بدیم.

اما کل داستان این نیست و به زودی با سورپرایزهای جدید‌تری، در خدمت شما خواهیم بود. امیدوارم تا اون موقع با Xei کارهای خفنی کرده باشید 😎

Share

برای ساخت agent های هوش مصنوعی، فقط به پایتون نیاز دارید!

پاییز دو سال پیش بود که ChatGPT آمد و به شکل خاصی بازار همه چیز رو عوض کرد یا بهتره بگم که به هم ریخت 😁 در این مدت نه فقط OpenAI که هزاران شرکت دیگر هم دست به کار شدند و شروع کردند به ارائه مدل‌های زبانی بزرگ یا همون LLMها و خواستند که به شکلی با OpenAI رقابت کنند.

الان که دو سالی از اون روزها گذشته منتها موضوع کمی تفاوت داره و بیش از این که سمت ارائه مدل بریم، بهتره به سمت agent یا «عامل» بریم که خب خودش یک بحث مفصله.

دیشب، در بلاگ انگلیسیم کمی در مورد مدل‌های بزرگ و ایجنت‌ها صحبت کردم و امروز تصمیم گرفتم که بلاگ فارسیش رو هم بنویسم که هر دو طرف، محتوای مناسب رو داشته باشیم.

ایجنت‌ها، عملگرایی به LLMها اضافه می‌کنند.

اگر دنبال‌کننده بلاگ و در کل محتوای من باشید، احتمالا می‌دونید که من هم در بازی LLM بودم و مثلا یکی از LLMهای اوپن سورسی که روش کار کردم مدل مارال هفت میلیارد پارامتری بود که روی Alpaca Persian تمرین داده شد.

اما آیا یک مدلی که سوال-جواب کنه کافیه یا به چیزی بیشتر نیاز داریم؟ در واقع برای این که LLMها بتونن موثر واقع بشن، باید بتونن با ابزارهای مختلف تعامل کنند. حالا شما فرض کنید که بخواهیم این تعامل رو در سطح فاین‌تیون کردن، به مدل اضافه کنیم.

یعنی فرض کنید که ما APIهایی از دیجی‌کالا، اسنپ، دیوار و مثلا ابر آروان بگیریم. سعی کنیم با کمک تعدادی API Call نمونه، مدل رو تیون کنیم. حالا فرض کنید یک نفر بخواد این مدل رو برای استفاده از تپسی یا باسلام به کار بگیره. چی میشه؟ هیچی! مجددا بار فاین‌تیون با APIهای جدید میفته روی دوش کاربر.

برای حل این مشکل، ما نیاز به agentها داریم. در واقع در مثال‌های فوق هر API و ابزاری که لازم داریم رو برمیداریم، می‌بریم یک جایی براشون توابع درستی می‌نویسیم و سپس با کمک LLMها خروجی رو «انسانی» یا Humanize می‌کنیم. به این شکل بار فاین‌تیون کردن LLMهم به دوش نمی‌کشیم و همه چیز هم عالی پیش خواهد رفت.

ساخت ایجنت بدون استفاده از فریمورک

دقیقا از زمانی که OpenAI و سایر شرکت‌هایی که LLM ارائه دادند APIهای چت و یا Instruction Following خودشون رو هم ارائه کردند، فریمورک‌های زیادی مثل Flowise یا Crew AI ساخته شدند که به شما کمک کنند تا ایجنت بسازید.

اما راستش رو بخواهید – همونطور که در بلاگ انگلیسی هم توضیح داده بودم – خیلی از این فریمورک‌ها یه حجم عجیب و غریبی از پیچیدگی رو به فرایند ساخت ایجنت دارند اضافه می‌کنند.

نتیجه این شد که شخصا به دنبال روشی گشتم که بتونم بدون استفاده از فریمورک خاصی، به راحتی بتونیم یک ایجنت بسازیم. برای همین لازم بود که درک کنم ایجنت اصلا چی کار می‌کنه؟ چرا انقدر مهمه که ما بتونیم ایجنت رو درک کنیم؟ و صدالبته از هر ایجنتی که اسمش «اسمیت» باشه دوری بجوییم 😂

ایجنت‌ها یک سری «وظیفه» و «ورودی مناسب هر وظیفه» رو درک می‌کنند. این وظایف یا تسک‌ها در واقع توابعی هستند که در برنامه‌مون قرار ادادیم که بتونن یک کاری رو انجام بدن (مثلا بره رخداد n ام سری فیبوناچی رو حساب کنه) و ورودی‌هاشون هم دیتاییه که ایجنت باید با هوش خودش تشخیص بده و بسازه.

در نهایت نیاز به مکانیزمی داریم که بیاد این وظایف و ورودی‌ها رو اجرا کنه، خروجیشون رو دوباره بده به LLM و ازش بخواد که Humanizeش کنه. گذشته از این بد نیست که ایجنت ما یک حافظه کوچکی هم داشته باشه.

نمونه یک ایجنت ساده با پایتون

سلب ادعا: از اونجایی که کد این ایجنت رو در گیتهاب گذاشتم، صرفا مراحل ساخت ایجنت ساده رو توضیح میدم و باقیش رو میتونید از گیتهابم ببینید و ایده بگیرید.

اولین گام ما برای ساخت ایجنت باید این باشه که یک LLM مناسب انتخاب کنیم. شما مختارید هر LLMای که یک OpenAI Compatible API ارائه می‌ده انتخاب کنید اما من شخصا دارم از پروژه جبیر خودم استفاده می‌کنم 😁

بعد از اون، لازم داریم که بیاییم یک کلاینت ساده OpenAI درست کنیم که بتونه با API مورد نظر ما کار کنه:

from openai import OpenAI

client = OpenAI(api_key="FAKE", base_url="https://openai.jabirpoject.org/v1")

همونطور که قبلا در این پست توضیح داده بودم، کتابخونه OpenAI در پایتون نیازمند یک API Keyئه که اینجا ما از FAKE استفاده کردیم براش.

حالا یک کلاس ایجنت ساده درست می‌کنیم که حافظه هم داشته باشه:

class Agent:
    
    def __init__(self, system=""):
        self.system = system
        self.messages = []
        if self.system:
            self.messages.append({"role" : "system", "content" : system})
    
    def __call__(self, message):
        self.messages.append({"role" : "user", "content" : message})
        result = self.execute()
        self.messages.append({"role" : "assistant", "content" : result})
        return result
    
    def execute(self):
        completion = client.chat.completions.create(
            model = "jabir-400b",
            messages = self.messages,
            temperature = 0.0
        )
        
        return completion.choices[0].message.content

همونطوری که می‌بینید، این ایجنت می‌تونه یک تاریخچه از چیزهایی که بهش گفتیم (و بهمون گفته) نگه داره و کم کم باید بریم سراغ این که بهش اکشن‌های مورد نظر رو اضافه کنیم.

ولی خب بهتره قبل از اضافه کردن اکشن، تستش کنیم. برای تستش هم این کد رو می‌تونید اجرا کنید:

sample_agent = Agent("You are a helpful assistant")
print(sample_agent("What is 1+1?"))

کد نمونه با اکشن

اگر دوست دارید بدونید که این ایجنت ما با اکشن چطوری کار می‌کنه، می‌تونید به این مخزن گیتهاب مراجعه کنید و ببینید که چطور به راحتی میشه یک اکشن به همین ایجنت ساده اضافه کرد و بار فریمورک‌ها رو هم به دوش نکشید.

جمع‌بندی

اگر طی دو سه سال گذشته محتوای این بلاگ رو خونده باشید می‌بینید که علاقه من به هوش مصنوعی از پروژه‌هایی مثل ریاضی ۱ رو با هوش مصنوعی پاس کن یا پلاک‌خوان فارسی که با Yolo v5 پیاده کرده بودم جدی شد.

این علاقه، کم کم به سمت Generative AI رفت و خب طبیعتا همین علاقه باعث ساخته‌شدن پلتفرم مانی و همچنین آتلیه شد. اما خب در سال ۲۰۲۵ احتمالا بیش از این که به مدل‌های جدید نیاز داشته باشیم، نیاز داریم که مدل‌ها رو به سمت agentic شدن بیاریم و اپلیکیشن‌ها رو به شکل AI agent داشته باشیم.

Share

استفاده از LLMها بعنوان سیستم‌عامل، آیا با نسل جدیدی از سیستم‌های عامل روبرو خواهیم شد؟

در یکی دو سال گذشته، هوش مصنوعی زایا یا همون Generative AI به شکل عجیب و غریبی رشد پیدا کرده و در تقریبا تمام عرصه‌ها از تولید متن، تصویر، موسیقی و حتی ویدئو و فایل‌های سه‌بعدی، استفاده‌های جالبی ازش شده. همچنین باید گفت که تقریبا حجم بسیار زیادی از این توجه، بخاطر ارائه ناگهانی ChatGPT بود و بعد از اون هم مدل‌های اوپن سورسی مثل لاما (و فرزندانش!).

در دنیای تولید چندرسانه‌ای هم که ناگفته نماند، مدل‌هایی مانند Stable Diffusion یا مانی، تا حد خوبی توجه مردم رو به خودشون جلب کردند و علاوه بر این که مورد توجه مردم عادی بودند، مورد توجه بازی‌سازان، طراحان و … هم قرار گرفتند و این خودش یعنی پذیرش ابزارهای جدید، چه بخواهیم و چه نخواهیم، صورت خواهد گرفت.

اما جای یک چیزی این وسط خالیه، اون هم اینه که «سیستم‌عامل» که شاید قدیمی‌ترین مفهوم زنده در رایانش شخصی بوده، چه تغییراتی رو برای پذیرش ابزارهای هوش مصنوعی، متحمل خواهد شد؟

سیستم‌عامل چیست؟

سیستم‌عامل یک لایه از نرم‌افزارهای سیستمیه که ارتباط بین سخت‌افزار و کاربر رو فراهم می‌کنه. در واقع تصور کنید اگر روی گوشی همراه شما iOS یا اندروید نباشه. یا مثلا لپتاپ و سیستم خانگی شما، مجهز به ویندوز یا مک یا لینوکس نباشه. چه استفاده‌ای ازشون میشه کرد؟ عملا هیچ.

در واقع سیستم‌عامل میشه بستری که ما بتونیم نرم‌افزارهای مختلف مثل فتوشاپ، تلگرام، آفیس، فایرفاکس و … رو اجرا کنیم و به نوعی تسهیل‌گر ارتباط بین نرم‌افزارها با منابع در دسترسشون میشه. حالا که می‌دونیم سیستم‌عامل چیه، یکم اون رو بشکافیم.

سفر به اعماق گنو/لینوکس

احتمالا اسم «لینوکس» یا «گنو/لینوکس» یا «اوبونتو» و امثالهم، به گوشتون خورده، نه؟ اگر از خوانندگان بلاگ من باشید که بیشتر از این‌ها به گوش شما خورده و احتمالا از BSD و Solaris و OpenIndiana و … هم خوندید 😁

گنو/لینوکس یک سیستم‌عامل کامله که از دو بخش تشکیل شده: گنو و لینوکس! حالا گنو چیه و لینوکس چیه؟ با هم بررسی می‌کنیم.

  • لینوکس: یک هسته یا کرنله که در ابتدای دهه ۹۰ میلادی، توسط شخص شخیص لینوس بندیکت تروالدز که در اون زمان ۲۱ سالش بوده، ساخته شده. این هسته سیستم عامل (kernel) وظیفه‌ش مدیریت فرایندها و سخت‌افزاره. در واقع این هسته، میاد می‌شینه وسط سیستم‌عامل و اون تعامل لازم رو با سخت‌افزار و فرایند‌ها برای ما تسهیل می‌کنه.
  • گنو: مجموعه‌ای از ابزارهاست که بعنوان بخشی از جنبش نرم‌افزار آزاد در سال ۱۹۸۳ میلادی به رهبری ریچارد متیو استالمن ساخته شده. گنو، سیستم‌عاملی بود استالمن به عنوان یک اکت اعتراضی نسبت به سیاست‌های AT & T در قبال کد منبع یونیکس، شروع به ساختش کرد.

حالا گنو/لینوکس چیه؟ خیلی ساده بخواهیم بگیم، گنو یک سری ابزارهای مورد نیاز کاربره و در فضای کاربر یا User Space اجرا میشه. اگر دوست دارید بیشتر در موردش بدونید، می‌تونید مستندات گنو و استانداردهای مربوطه رو مطالعه کنید.

ولی خب بذارید یکم ساده‌ترش کنیم. فرض کنیم که ما یک هسته سیستم‌عامل داریم که داره به خوبی و خوشی، با سخت‌افزار ارتباط می‌گیره و کارش رو می‌کنه. اما نیاز داریم که یوزر بتونه از طریقی، فرایندهای مد نظر خودش یا همون «برنامه‌»ها رو اجرا کنه. به همین خاطر نیاز به یک «پوسته» یا shell هم داریم. مثلا گنو، یک ابزار بسیار خوبی داره به نام bash که این کار رو انجام می‌ده.

از طرفی، اصلا وقتی برنامه رو نوشتیم، با چی باید اجراش کنیم؟ اینجا ابزارهایی مثل GNU Binutils خودشون رو نشون میدن. البته لازم به ذکره که با ابزارهایی مثل GNU Compiler Collection یا GCC هم برنامه‌ها رو می‌تونیم بسازیم.

خب الان فهمیدیم که کاربر، نیاز به فضای مختص خودش روی سیستم‌عامل داره. برای این که بتونه برنامه‌ها رو اجرا کنه، بسازه و تغییرشون بده. گذشته از این برای بررسی و پردازش بیشتر داده‌هایی که از شبکه میاد، داده‌هایی که در فرم‌های خاصی مثل تصویر و … داریم و …؛ نیاز داریم که این فضای کاربر رو داشته باشیم.

پس هوش مصنوعی چه؟ از آن نور وارد می‌شود

خب اینجا جا داره که ما بریم و کمی با مفاهیم و مطالب مربوط به هوش مصنوعی آشنا شیم.

چرا که احتمالا شما تا الان دارید پیش خودتون فکر می‌کنید که خب احتمالا این مطلب در مورد یک کلاینته که برای ابزارهای هوش مصنوعی نوشته شه و روی سیستم‌عامل ما نصب شه.

خیلی بی‌راه فکر نمی‌کنید البته، ولی بیایید کمی ابتدا LLMها رو بشناسیم و بعد بریم سراغ این که LLM OS یا «سیستم‌عامل مدل زبانی بزرگ» چطور کار خواهد کرد برامون 🙂

شناخت بهتر LLMها

قبلا در پست مربوط به مارال ۷ میلیارد پارامتری (لینک) و پستی که درش از چیرگی زبان انگلیسی روی دنیای AI شکایت و گله کرده بودم (لینک) در مورد LLMها صحبت کردم. اما بهتره که کمی در موردشون بیشتر با هم بدونیم.

LLM چیست؟

مدل‌های زبانی بزرگ (به انگلیسی Large Language Model) مدل‌ها و ابزارهای مبتنی بر هوش مصنوعی هستن که با تکنیک‌های یادگیری عمیق مثل RLHF یا یادگیری تقویتی با بازخورد انسانی تربیت میشن. در واقع این مدل‌ها یک هدف بیشتر ندارند: بیشترین نزدیکی به زبان آدمیزاد.

یکی از دلایلی که مدل‌هایی مثل GPT-2 یا Bloom زمان خودشون خیلی ترکوندند، این بود که اون موقع بهترین شکل ممکن رو برای تولید زبان داشتند اما خب GPT-3 و LLaMa 3.1 و …؛ به شدت در این زمینه بهتر عمل کردند.

مدل‌های زبانی بزرگ، معمولا اینطوری کار می‌کنند:

همون‌طوری که می‌بینید، کاربر یه محتوایی رو برای LLM فراهم می‌کنه که اینجا گفته recite the first law و بعد مدل، اومده بر اساس داده‌ای که انسان‌ها پیش‌تر بهش دادند، یک سری کلمه پیشنهاد میده. مثلا اینجا، در حال بیان قوانین سه‌گانه رباتیک ایزاک آسیموفه.

اما از این موضوع بگذریم، یک بحث دیگر هم که LLMها به خوبی می‌تونن درکش کنن و این برمی‌گرده به تعداد متغیرهایی که در داده ورودی دیدن، ارتباط معنایی بین کلمات می‌تونه باشه که خب با توجه به این که عمده LLMها در حال حاضر Human Feedback یا بازخورد انسانی در مرحله پیش‌آموزششون دخیله، چیز عجیبی نیست و ناظرین انسانی، بهشون بازخورد لازم رو میدن.

کاربردهای LLMها

کاربردهای LLMها از چیزی که فکر کنید بسیار بیشتره. در حال حاضر بسیاری از پروژه‌هایی که به شکل‌های مختلفی دارند با «متن» سر و کله می‌زنن، به نحوی LLM رو وارد کار و زندگیشون کردند. به همین خاطر هم لازم به ذکره که نمیشه دسته‌بندی خاصی ارائه کرد و چیزی که در ادامه فهرست می‌کنم در واقع بیشترین کاربردهای مدل‌های بزرگه.

  • تولید محتوا برای وبلاگ، وبسایت و MVP
  • تولید محتوا برای ویدئوهای یوتوب و اینستاگرام
  • تولید کد
  • تولید داستان برای بازی‌های رایانه‌ای
  • تولید کدهای SQL
  • و …

همونطوری که می‌بینید، به شدت این عزیزان، در حال استفاده در زمینه‌های مختلفن و خب یکپارچگی این‌ها با سیستم‌های عامل هم خودش یک داستان جداست.

کدام سیستم‌عامل‌ها، به هوش مصنوعی مجهز شدند؟

در حال حاضر مایکروسافت با ارائه Copilot و اپل با ارائه Apple Intelligence تا حد خوبی، هوش مصنوعی رو به سیستم‌های عاملشون آوردند.

همچنین اگر اشتباه نکنم دو سه ماه پیش بود که مایکروسافت ایده‌ای به اسم Copilot+PC رو مطرح کرد که کوپایلت، بیاد و حرکات کاربر رو زیرنظر بگیره و بعد بهش پیشنهاد بده چطور می‌تونه بهتر از کامپیوترش استفاده کنه و خب می‌دونید چه فاجعه حریم‌ خصوصی می‌تونست بشه!

اما در حال حاضر، این که LLMها بتونن سیستم‌عامل رو «کنترل کنن» چیزیه که در حد چندین پروژه آزمایشگاهی مونده و به اون شکل، تجاری‌سازی نشده. چیزی که این همه تا اینجا در موردش خوندید و از اینجا به بعد قراره تازه جذاب باشه :))

رویای کارپاتی: سیستم‌عامل مبتنی بر LLMها

چندی پیش، آندره کارپاتی (که از بزرگان هوش مصنوعی و علوم کامپیوتره) در یوتوب ویدئوی با عنوان مقدمه‌ای بر LLMها منتشر کرد و چیزی حدود یک ساعت در مورد پتانسیل‌های این مدل‌ها، حرف زد و در نهایت ایده LLM OS رو مطرح کرد 🙂

سیستم‌عامل مبتنی بر LLM چطور قراره کار کنه؟

خب بیایید بریم به همون گنو/لینوکس. وقتی شما «ترمینال» رو باز می‌کنید، قراره چه اتفاقی بی‌افته؟ آفرین قراره shell رو ببینید. بعدش چه اتفاقی می‌افته؟ شما شروع می‌کنید به وارد کردن دستورات سیستم‌عامل. مثلا با دستور ls می‌تونید بیایید و محتویات یک پوشه رو ببینید.

حالا فرض کنید جای این که دستورات ترمینال لینوکس رو حفظ کنید، به فارسی یا انگلیسی، برای کامپیوترتون توضیح بدید. این دقیقا میشه کاری که LLM قراره در سیستم‌عامل برای ما انجام بده.

چطور این اتفاق می‌افته؟ در اکثر زبان‌های برنامه‌نویسی ما قادر هستیم که از subprocessها استفاده کنیم. یعنی با کمک subprocessها و LLM می‌تونیم اینطوری کار رو پیش ببریم:

  • شما به سیستم‌عامل می‌گید که «برنامه X رو باز کن»
  • سیستم‌عامل از طریق یک رابط متنی یا صوتی، این دستور رو از شما می‌گیره و به LLM ارسال می‌کنه.
  • حالا LLM طوری تنظیم شده که اون رو به یک subprocess تبدیل کنه و اجراش کنه، کد مربوطه رو تولید و اجرا می‌کنه.
  • بعد از اجرا، برنامه X اجرا میشه (اونطوری که ازش خواستید) و نتیجه توسط LLM به شما گفته میشه.

خیلی دقیق بخواهید بهش نگاه کنید، میشه شبیه چیزی مثل Jarvis در فیلم‌های Iron Man یا حتی «سامانتا» در Her. حتی میشه گفت تا حد خوبی شبیه The Machine در سریال Person of Interest هم هست.

چالش‌های LLM OS

اما این ایده هم مثل سایر ایده‌های هوش مصنوعی، خالی از ایراد و چالش نیست. چندتا از چالش‌های بزرگش رو با هم بررسی کنیم:

  • LLM های قابل اجرا روی سیستم‌های شخصی معمولا خوب نیستن. خوب هم باشند معمولا به شدت کُند هستند.
  • LLMهای خوب، عمدتا باید از طریق وب در دسترس باشند.
  • این که افسار کامپیوتر رو بدیم دست یک موجودیت آنلاین، کمی با ایده حریم خصوصی در تضاده، بخصوص اگر بخواهیم این پروژه رو مبتنی بر لینوکس یا BSD پیش ببریم.

همین سه چالش کافیه تا فعلا چنین چیزی رو به درستی نتونیم داشته باشیم. با این که تلاش‌هایی هم در موردش شده.

جمع‌بندی

در نهایت باید گفت که ما کم کم به سمتی می‌ریم که کل «رابط کاربری» ما خلاصه بشه در «زبان». یعنی عمده رابط‌های کاربری از ما متن یا صدا بگیرند و تبدیلش کنن به کارهایی که ازشون خواستیم و خب این اتفاق خوبی می‌تونه باشه.

و خب با ظهور LLMها و پیش‌رفت زیرساخت‌های سخت‌افزاری، این امر با سرعت بیشتری در حال به وقوع پیوستنه و شما احتمالا تا چند سال دیگر، بتونید توزیعی از لینوکس رو نصب کنید که چنین امکانی در اختیارتون بذاره 🙂 یا روی مک و آیفونتون چنین امکانی داشته باشید.

در کل، پیشرفت جامعه بشری به کمک AI انتهای جالبی خواهد داشت، البته به شرط این که براش انتهایی بشه متصور شد!

موفق و خندون باشید.

Share

پارچ، روحی تازه در کالبد اکوسیستم گنو/لینوکس ایران

اگر شما هم از «قدیمی»های جامعه نرم‌افزار آزاد و متن‌باز ایران باشید، احتمالا با خیلی از پروژه‌هایی که هدفشان ساخت یک توزیع گنو/لینوکس متناسب با نیاز روز کاربر بوده، آشنایید. چرا که به درازای تاریخ ورود گنو/لینوکس به ایران، تلاش برای ساخت توزیع ایرانیزه‌شده هم بوده.

اما متاسفانه، یک نگاه اجمالی به دیستروواچ (لینک) می‌تونه به ما نشون بده که تمامی این پروژه‌ها در نقطه‌ای متوقف شدند. البته لازم به ذکره که پروژه‌هایی مانند زمین، کاپریس و جبیر هم بودند که متاسفانه در دیستروواچ مدخل مرتبط با خودشان را نتونستن داشته باشن.

اما چند وقت پیش، توجهم به پروژه‌ای جلب شد که اتفاقا کاملا زنده‌ست و خیلی هم خوب داره پیش میره. پروژه‌ای با نام «پارچ‌لینوکس» که در واقع ترکیبی از واژه‌های Persian و Arch Linux می‌تونیم در نظر بگیریم. این ترکیب، موجب ساخت یک اسم بامزه هم شده که به نظرم این خودش می‌تونه تا حد خوبی، ارزش برندینگ خلق کنه برای این محصول. برای دریافت این توزیع و اطلاعات بیشتر می‌تونید به وبسایتش (لینک) مراجعه کنید.

آشنایی اجمالی با آرچ

احتمالا اگر کاربر گنو/لینوکس باشید، اسم آرچ رو به وفور شنیدید. یک توزیع نه‌چندان دوست‌داشتنی که بخاطر مدل عرضه «غلتان» معروفه. البته گذشته از اون، بخاطر این معروفه که همه چی رو «ساده» نگه داشته و از قاعده KISS پیروی می‌کنه.

در واقع، اگر شما در این زمینه تازه‌کار باشید، آرچ رو اصلا و ابدا نمی‌تونید بدون کمک یک حرفه‌ای‌تر، ویدئو یا مستند خاصی نصب کنید. اما خب از طرفی هم آرچ امکانات جالبی داره (مثل AUR) و به نسبت توزیع‌های سنتی‌تر (دبیان مثلا) در بعضی سخت‌افزارها می‌تونه کارکرد بهتری از خودش نشون بده.

یکی از دلایلی که تعداد نسبتا خوبی توزیع مبتنی بر آرچ‌لینوکس داریم، دقیقا همینه. توزیعیه که چیزهای خوبی برای عرضه داره ولی خب در دسترس همه نیست. به همین خاطر هم خیلی از افرادی که بیشتر من و شما با آرچ آشنان، اومدند و توزیع‌هایی ساختند که به ما هم کمک کنه ازش لذت ببریم.

بریم سراغ پارچ!

من به سهراب (سازنده پارچ) قول یک «نقد منصفانه» دادم و خب، اینجا هم می‌ریم که به صورت منصفانه نقدشون کنیم.

اول بگم که با شناختی که از پروژه پیدا کردم، سازندگان توزیع، روی KDE بیشتر مانور دادند و وقت گذاشتن (و البته این به معنای بد بودن سایر نسخه‌ها نیست) و اگر سیستم خوبی دارید، به نظر من بهتره مستقیم برید سراغ این نسخه.

من از اونجایی که میخواستم روی ماشین مجازی تست کنم و بعد به یک لپتاپ قدیمی ببرمش، نسخه XFCE رو دانلود و نصب کردم.

برخوردهای اولیه

پس از این که تصویر ISO پارچ رو بوت کردید، این صفحه به شما نمایش داده میشه:

طرح پس‌زمینه، جذاب و ایرانیه. معمولا خیلی از توزیع‌های مشابه روی این صفحه پس‌زمینه خاصی نمی‌ذارند. پس این هویت بصری، به نظرم تا اینجا یک نقطه قوت برای این توزیع بوده.

پس از این که گزینه اول رو انتخاب کنیم، به این صفحه می‌رسیم:

اینجا برام جالب بود. عموما XFCE در چنین توزیع‌هایی، پنلی به تقلید از ویندوز در پایین صفحه دارند، یا این که نرم‌افزارهایی مثل cairo-dock یا Plank رو پایین صفحه قرار میدند و پنل رو به بالا منتقل می‌کنند (به تقلید از macOS) که خب در اینجا کلا شکل متفاوتی از پنل xfce رو شاهدیم. پنل که گوشه سمت چپ صفحه نمایش قرار گرفته و امکان خوبی برای استفاده از فضای افقی مانیتور فراهم می‌کنه.

مورد بعدی، Welcome Screen جذاب این توزیعه. این هم از مواردیه که در توزیع‌هایی مثل پارچ، خیلی کمتر به چشم میخوره. ولی خب تا اینجا پارچ بسیار فراتر از یه ریمستر ساده از آرچ خودش رو نشون داده.

نصاب

مثل خیلی از توزیع‌های این روزها، پارچ هم از کالامارس برای نصب خودش روی دیسک شما استفاده می‌کنه و خب وقتی لوکیشن شما رو بر اساس IP ایران تشخیص بده، فارسی میشه و سیستم‌عامل هم فارسی نصب می‌کنه.

در نصاب تفاوت خیلی زیادی با سایر توزیع‌ها مشاهده نمی‌کنیم که این هم می‌تونه یک نقطه قوت محسوب بشه. چرا که حس آشنایی برای کاربرانی که از سایر توزیع‌ها میان داره.

به همین خاطر، نماگرفت‌های بیشتری از نصاب اینجا قرار نمی‌دم.

پروسه نصب، حدود ۳-۴ دقیقه طول می‌کشه و بعد از اون به این صفحه می‌رسیم:

و اینجاست که با یک ریبوت، به دنیای پارچ می‌ریم 🙂

تست پارچ پس از نصب

راستش یکم نقدم اینجا قراره تند بشه به چندین دلیل. نخستین دلیل اینه:

وقتی در syslinux که موقع بوت شدن ISO دیدیم اون پس‌زمینه زیبا به چشم میخوره، انتظار داشتم در گراب هم همون شمایل رو ببینم. با توجه به این که VirtualBox دارم انتظار لود شدن کامل plymouth نداشتم (اگر توزیع داشته باشه) ولی انتظار گراب زیباتری رو داشتم. گرچه پس‌زمینه گراب فقط یه عکسه و تغییری در کارکرد سیستم نداره.

اما مشکل اصلی من، بعد از بوت شدن شروع شد. پروسه بوت، کاملا درست طی شد ولی SDDM (مدیر نمایشگر) درست کار نکرد و مجبور شدم با یکم دانش لینوکسی‌ای که داشتم، وارد محیط گرافیکی بشم.

البته نکته خوب اینجاست که این مورد رو سریعا به سازندگان توزیع اطلاع دادم و راه‌حل سریعی براش ارائه دادند و از اون گذشته، در برنامه قرار دادند که در ریلیزهای بعدی این مشکل پیش نیاد. این پشتیبانی جامعه‌محور، برای من جالب و تحسین‌برانگیز بود.

محیط گرافیکی و عملکرد آن

خب، پس از فیکس کردن SDDM چنین صفحه‌ای رو می‌بینیم:

و پس از ورود پسورد، به محیط زیبای XFCE وارد می‌شیم:

برای تست یه سری موارد هم، ترمینال رو باز کردم و GIMP رو روی پارچ نصب کردم و همه‌چی خیلی خوب و روان پیش می‌رفت.

جمع‌بندی

برخلاف خیلی از توزیع‌های جدیدی که هرروز ایجاد می‌شن، پارچ تا حد خیلی خوبی حرف برای گفتن داره. یکی از دلایلش هم اینه که سیستم پایداری خوبی داره و تا الان، خبری از این که سیستم کلا از کار بیفته یا سر نصب بسته‌ها کرش کنه؛ نبوده.

در کل تجربه بسیار خوبی برای من رقم زد، آن هم در ویرچوال باکس مک (که احتمالا می‌دونید بلای عالمه) اما خب من رو داره قلقلک می‌ده که بعنوان سیستم‌عامل اصلی کامپیوتر قدیمی، ازش استفاده کنم.

حتی با توجه به سخت‌افزار لپتاپ قدیمی (پردازشگر i5 نسل چهارم و ۱۶ گیگابایت حافظه) عجیب نیست که نسخه‌های KDE یا GNOME هم بتونم بدون مشکل اجرا کنم. قطعا پس از نصب روی ماشین واقعی هم نقد مجددی بر این توزیع، خواهم نوشت.

در پایان و بعنوان حسن ختام هم باید بگم که مایه خوشحالیه که در شرایطی که هیچ‌کس به فکر جامعه نرم‌افزار آزاد نیست، چنین پروژه‌هایی زنده هستند و به باقی دوستان، امید می‌دن.

موفق و موید باشید.

Share

مارال اینجاست، مدل ۷ میلیارد پارامتری با پشتیبانی از زبان فارسی

در دنیایی که AI و بخصوص از نوع Generative به شدت در اون مهم شده، یکی از مسائل بزرگی که باهاش روبرو هستیم، چیرگی زبان انگلیسی بر جویه که ساخته شده.

من در مطلب پیشینم، در مورد چیرگی زبان انگلیسی بر دنیای هوش مصنوعی نوشته بودم که می‌تونید بخونید و ببینید که چه مشکلاتی وجود دارند که داریم باهاشون دست و پنجه نرم می‌کنیم.

اما خب، الان قضیه کمی متفاوت شده و ما در این مطلب قراره «مارال» رو بررسی کنیم، هم این که ایده‌ش از کجا آمد و هم این که چیه و چه فرق‌هایی با تلاش‌های پیشین داره و هم این که در کل مزیتش چیه.

مارال هفت میلیارد پارامتری و مزایای آن

در تابستان امسال یا دقیق‌تر بگم روز ۱۵ تیر ۱۴۰۲، من رویدادی با نام Summertime AI برگزار کردم. رویداد برای معرفی چندین ابزار هوش مصنوعی بود و من اشاره‌ای به ابزاری به اسم «مارال» کردم.

مارال در اون زمان، قرار بود یک GPT2 تیون شده روی زبان فارسی باشه، اما خب بعد از کمی تحقیق و تفحص در مورد این مدل، فهمیدم که خیلی پیش‌تر از ما، افرادی بودند که این مدل رو با زبان فارسی تیون کنند.

حقیقتا GPT2 هرقدر هم ساختار خوبی داشت، ظاهرا مدل مناسبی برای این موضوع نبود!

اما راه‌حل رو کمی بعدتر، پیدا کردیم. در ادامه، قراره در مورد این راه‌حل صحبت کنیم و ببینیم که مارال چیه و چه مزایایی داره و برای توسعه بهترش، باید چه کارهایی کنیم.

مارال چیه؟

مارال، یک مدل بزرگ زبانی یا LLM بر مبنای مدل Mistral 7B (لینک) و تیو‌ن‌شده برای زبان فارسیه. این مدل، به صورت «پیروی از دستورالعمل» یا Instruction Following کار می‌کنه و نتایجی که تولید می‌کنه هم تقریبا هم‌ارز GPT-3.5 هستند.

مارال در حال حاضر در نسخه ۷ میلیارد پارامتری عرضه میشه، همچنین به صورت یک adapter برای Mistral هم قابل استفاده‌ست که اگر شما پیش‌تر مدل میسترال رو جایی داشته باشید، صرفا با استفاده از آداپتور مارال، بتونید ازش استفاده کنید.

همچنین مدل و جزییاتش در این لینک موجودند.

مزایای مارال نسبت به مدل‌های فارسی قبلی چیه؟

برای درک این موضوع، باید تا حد زیادی عقب بریم. ببینیم اصلا از کِی، بحث پردازش زبان طبیعی یا NLP فارسی، خیلی داغ شد. راستش رو بخواهید از زمانی که شخصا به یاد دارم، بحث پردازش و نمایش زبان فارسی، بحث داغی بود.

حتی میشه گفت چالش‌های بسیار زیادی هم در این حوزه وجود داشت. کم‌کم با پیشرفت اینترنت، این موضوع هم بهبود پیدا کرد. ناگفته نماند که البته حتی حضور فونت‌های آزاد فارسی مانند وزیرمتن (جا داره اینجا هم یادی کنیم از صابر راستی‌کردار عزیز) هم تاثیر بسزایی در این امر گذاشتند.

اما بحث Text Generation چطور؟ این بحث به صورت خاص در همون سال‌های ۲۰۱۶ تا ۲۰۱۸ که در دنیا مدل‌های LSTM و GPT-2 خیلی مطرح بودند، پا گرفت. بسیاری از اشخاص و شرکت‌های ایرانی، به سمت تولید مدل رفتند. در ادامه، دوتا از این مدل‌ها که «اختصاصا» برای زبان فارسی ساخته شدند رو بررسی و مشکلاتشون هم مطرح می‌کنم.

مدل‌های تجاری

در حال حاضر، تنها مدلی که به صورت تجاری در دسترسه، مدل وبسایت «خودنویس»ئه که خب، این مدل علیرغم این که خروجی‌های بسیار خوبی می‌تونه تولید کنه، تجاریه و نمیشه خیلی بررسی دقیقی روش داشت.

علاوه بر اون، خروجی‌هایی که تولید می‌کنه من رو یاد خروجی مدل‌هایی مانند GPT NeoX 20B و GPT J 6B میندازه و خب با توجه به قدمت این وبسایت، این موضوع کاملا طبیعیه.

یکی از مشکلاتی که مدل‌هایی مثل GPT J دارند، اینه که علاقه خاصی به تکرار خودشون دارند، البته این مشکل تا حدی هم به Tokenizer های مدل‌ها برمی‌گرده که برای زبان فارسی، مناسب‌سازی نشدند.

مدل‌های آزاد

اما در حین جستجو، تونستم دو مدل آزادی که اختصاصا برای فارسی ترین شدند رو پیدا کنم که در ادامه در موردشون کمی توضیح خواهم داد.

  • مدل ParsGPT: این مدل، دقیقا GPT2 اون هم نسخه ۱۴۲ میلیون پارامتری بود که روی دیتای فارسی ترین شده، گرچه دقت نسبتا خوبی در تولید محتوای فارسی داره، اما دو تا مشکل بزرگ داشت. اول، این که طبق معمول عادت به تکرار خودش داره (این مساله رو در ادامه در موردش صحبت خواهم کرد) و دوم این که از یه جایی به بعد، دقیقا مطالب بی‌ربط به پرامپتی که داده شده تولید می‌کنه. مثلا ممکنه از یه مطلبی پیرامون هوش مصنوعی، برای شما متن یک خبر مرتبط با وزارت خارجه بورکینافاسو تولید کنه!
  • مدل GPT2 Medium Persian: این مدل باز کمی بهتر بود. مدل بزرگ‌تر و با حدود ۳۰۰ میلیون پارامتر. اما مشکل به طور واضح، دیتایی بود که مدل باهاش pretrain شده. به قول معروف روی «آشغال‌های سئوشده وب فارسی» ترین شده و احتمال این که مطالب خلاف واقع تولید کنه بسیار بالاست. گذشته از این، هنوز مشکل تولید محتوای بی‌ربط هم در این یکی مدل به چشم میخورد.

پس راه‌حل این بود که یک مدل جدیدتر با پایه جدیدتر ساخته بشه. خوشبختانه دوستی به نام سینا رشیدی، دادگان آلپاکای فارسی رو ایجاد کرده که ازش برای ترین کردن این مدل، استفاده کردیم.

و اگر بخواهیم مزایای مارال رو نسبت به مدل‌های پیشین بگیم:

  • دیتاست بهتر
  • پارامترهای بیشتر
  • مدل پایه جدیدتر
  • خروجی‌های بهتر

خواهند بود.

مزایای مارال نسبت به مدل پایه‌ش (Mistral 7B) چیه؟

اولین روزی که از میسترال استفاده کردم متوجه شدم نسبت به مدل‌های قبلی مثل LLaMa, LLaMa2, StableLM 7B و Vicuna و امثالهم، درک بهتری از الفبای فارسی/عربی داره.

این نشان از این بود که این مدل، قابلیت فهمیدن فارسی داره ولی به قدر کافی مطلب فارسی ندیده. به همین خاطر دست به فاین‌تیون کردنش روی دیتاست فارسی زدم.

مزیت این مدل نسبت به میسترال، اینه که فارسی رو از لحاظ ساختار و معنا درست‌تر می‌فهمه و می‌تونه خروجی بسیار بهتری در زبان فارسی تولید کنه. نکته جالب اینه که زبان انگلیسی هم همچنان می‌فهمه، پس یک مدل Bilingual داریم که می‌تونیم در آینده، ازش استفاده‌های باحالی کنیم.

بذارید خیلی خلاصه بگم، مارال، تمام خوبی‌های میسترال رو داره بعلاوه درک خوبی از زبان شیرین فارسی. البته ناگفته نماند که در بخش بعدی مشکلاتی که در نسخه آلفا داشتیم رو هم لیست کردم و براتون نوشتم 🙂

در حال حاضر چه مشکلاتی ممکنه در استفاده از مارال پیش بیاد؟

  • مدل در هذیان‌گویی (Hallucination) بسیار خوبه. البته، این مشکل تقریبا تمام مدل‌های زبانیه و با گذر زمان، میشه حلش کرد.
  • مدل علاقه زیادی به تکرار خودش داره 😁
  • نتایج مدل در حال حاضر خیلی factual نیستند و می‌تونه misinformation تولید کنه.
  • مدل خیلی بزرگه و با همه سخت‌افزارها قابل اجرا نیست (البته با کد ۸ بیتی که ارائه کردیم قابل اجرا میشه)
  • فرمت پرامپتش، کمی مناسب نیست و نیازه که شروع و پایان جملات به مدل آموزش داده شه.

چه چیزی برای توسعه بهتر مارال لازمه؟

  • دیتاست بهتر (نه الزاما بزرگتر) و حتی شاید دیتاست‌های تخصصی
  • ترین شدن tokenizer روی زبان فارسی

چطور از مارال استفاده کنم؟

چنانچه قصد دارید از مارال استفاده کنید، کدهای اجرای مارال روی GPU رو در این لینک قرار دادیم. می‌تونید این کدها رو روی سیستم خودتون یا در Google Colab اجرا کنید.

جمع‌بندی

پس از این که یک ترین موفق روی Stable Diffusion و ساخت مدل «مانی» که البته در این مطلب در موردش توضیح داده بودم، باعث شد که پلتفرم هوش مصنوعی مانی رو راه‌اندازی کنم و به نوعی یک AI company تشکیل بدم، مسیرم به شکلی تغییر کرد که پشتیبانی بهتر و بهتر از زبان شیرین فارسی رو بتونم به این مدل‌ها اضافه کنم.

در حال حاضر، کاربردهای زیادی برای مدل بزرگ زبانی فارسی مانند مارال میشه متصور شد. گذشته از ربات‌های پشتیبان (که با متد RAG ساخته میشن) میشه به کاربردهای بسیار بیشتری هم برای این مدل فکر کرد. دوست دارم بدونم شما چه فکری در مورد این مدل دارید؟

در پایان هم ممنونم از وقتی که گذاشتید و این مطلب رو خوندید. امیدوارم این مطلب، برای شما مفید بوده باشه. موفق و موید باشید 🙂

Share

چگونه رمز موفقیت میدجرنی شکسته شد؟ نخستین دیدار با مانی ۴

پس از یک مدت طولانی ننوشتن، بالاخره برگشتم تا بخوام در مورد مانی صحبت کنم. فکر کنم مدتهای طولانیه که این پروژه رو شروع کردم ولی خب هربار به یک دلیل خاصی، از نوشتن محتوای فارسی در موردش صرف نظر کرده بودم. اما این بار آمدم تا با قدرت در مورد مانی، میدجرنی، دالی و سایر دوستانی که به کمک هوش مصنوعی برای شما نقاشی جنریت می‌کنن صحبت کنم.

ابتدا بذارید کمی از میدجرنی صحبت کنم.میدجرنی یک ابزار هوش مصنوعیه که در پیام‌رسان اجتماعی دیسکورد داره استفاده می‌شه و مردم با کمکش تصاویر جذابی تولید می‌کنند. میدجرنی، همیشه چند مرحله از باقی تولیدکنندگان تصویر جلوتر بود و همین باعث شده بود که خیلی‌ها حتی از من بپرسند «چرا مثل اون تصویر تولید نمی‌کنی؟» و در نهایت من هم به این نتیجه رسیدم که باید ته و توی این مدل خاص رو دربیارم و مانی رو بهش نزدیک یا ازش بهتر کنم. در این پست، قصد دارم در مورد پروسه کارم بنویسم.

تاریخچه مانی

پارسال همین موقع‌ها (حوالی شروع سال نوی میلادی، در این حد که حتی یادمه که جنگ اکراین هم حتی شروع نشده بود) در خیلی از شبکه‌های اجتماعی می‌دیدم که دوستان دیگری دارند با کمک هوش مصنوعی، نقاشی تولید می‌کنند و خب حقیقتا من هم با خودم گفتم که بهتره من هم سراغ این قضیه برم.

اون موقع، ابزاری به اسم VQGAN بود که با کمک CLIP می‌تونست ورودی‌های متنی رو به تصویر تبدیل کنه اما خروجی‌ها خیلی خوب نبودند و خیلی از سایر رقبا عقب بود. بهرحال این نقطه شروع خوبی بود و با یادگیری این ابزار و این که چطور کار می‌کنه، موفق به ساخت مدل‌ خودم مبتنی بر VQGAN+CLIP شدم.

اون موقع خیلی راضی نبودم و بیشتر میخواستم، اما حقیقتا ابزار آزاد و متن‌باز خوب دیگری در دسترس نبود که بخوام روی اون کار کنم تا این که با Latent Diffusion آشنا شدم که تصاویر قشنگ‌تر و بهتری تولید می‌کرد اما اون هم هنوز خیلی جای کار داشت.

مدت‌های زیادی، در نظر داشتم که پروژه «مانی» رو پیش ببرم اما پایه مناسبی نداشتم. اون‌هایی که می‌شد به راحتی به قولی پیاده‌سازی یا حتی Fine Tune بشند خروجی خوبی نداشتند و اون‌هایی که می‌تونستند خروجی‌های خوبی تولید کنند هم آموزش دادن و فاین‌تیون کردنشون منابع بسیار بسیار زیادی می‌خواست.

ظهور Stable Diffusion

اوضاع در حدود مردادماه امسال، خیلی عوض شد. یک‌باره شرکتی به اسم Stability AI (لینک) تصمیم گرفت یک مدل تولید تصویر متن‌باز ارائه کنه به اسم Stable Diffusion که خب این خودش می‌تونست یک نقطه عطف در تولید تصویر و در کل اثر هنری به کمک هوش مصنوعی محسوب بشه.

وقتی این مدل منتشر شد، مجددا مشکلی وجود داشت اون هم این بود که فاین‌تیون کردن این مدل، منابع زیادی میخواست تا این که نسخه یک و نیم این مدل، منتشر شد (لینک) که دقیقا همراهش، یک یا چند برنامه‌نویس باحال دیگر هم بودند که تکنولوژی Dream Booth گوگل رو با کمک Stable Diffusion پیاده کرده بودند. اینجا بود که فاین‌تیون کردن این ماجرا، به سادگی امکان‌پذیر بود.

اما به خوبی Midjourney نبود…

حالا یک مشکلی وجود داشت. مشکل این بود که تصاویر علیرغم زیبایی بصری‌ای که داشتند و درک و فهمی که مدل از ورودی‌ها داشت، به خوبی میدجرنی نبودند.

البته این نگرانی من نبود، عمدتا نگرانی افرادی بود که به عنوان «مشتری» سراغ این پروژه می‌آمدند و میخواستند از این پروژه استفاده تجاری کنند و خب ظاهرا نُرمی در بین هموطنانمون وجود داره که با علم به این که کجا زندگی می‌کنیم و با چه امکاناتی چی توسعه می‌دیم؛ همچنان انتظار دارند در حد و اندازه غول‌ها ظاهر بشیم 🙂

خلاصه این قضیه خیلی باعث شد به من بربخوره 😁 و به همین خاطر یک دیتاست از تصاویری که در میدجرنی تولید شده بود رو برداشتم، به همراه متون ورودیشون (دیتاست حدود ۱۰۰۰ تصویر) و آخرین نسخه مانی (لینک) رو ساختم. خروجی‌ها واقعا خوب شده بودند اون هم فقط با هزار تصویر. اما یک مشکلی بود، تنوع خروجی به شکل میدجرنی نبود تا این که کمی در دیسکورد میدجرنی، چرخیدم و نتایج جالبی دستم آمد 🙂

چگونه رمز موفقیت میدجرنی شکسته شد؟

خارجی‌ها یه اصطلاح جالبی دارند. وقتی میخوان ببینن چیزی چطور کار می‌کنه میگن Let’s look under the hood یا «بذار یه نگاه به زیر کاپوت بندازیم». اما مشکل اینجاست که میدجرنی کاپوتش جوش داده شده. پس چطور میشه فهمید اون زیر چه خبره؟

خب حقیقت اینه که در سال‌های اخیر خیلی چیزها من‌جمله ویندوز، مک او اس، آیفون! تکنولوژی‌های فیسبوک و … مهندسی معکوس شدند و نمونه‌های آزاد و متن‌باز ازشون ساخته شده. پس مهندسی معکوس میدجرنی هم نباید کار سختی باشه نه؟ فقط به کمی اطلاعات نیاز داریم. این اطلاعات رو می‌شد از دیسکورد به دست آورد.

اول، داشتم دنبال مدل‌هایی می‌گشتم که بر اساس روش کار میدجرنی ساخته شده باشند. نخستین چیزی که دیدم OpenJourney از Prompthero بود که خب کارم رو تا حد زیادی راه انداخت و تصاویر خوبی بهم داد (که حتی بعضیاش رو برای تست و بهبود مانی هم استفاده کردم). اما هنوز به خود میدجرنی، نرسیده بودم. پس باید چه کار می‌کردم؟

میدجرنی یک مدل نیست، چند مدله!

خب یکی از چیزهایی که در مورد میدجرنی خیلی جالبه اینه که همیشه در آپدیت‌هاش مدعی میشه که اضافه کردن یک کلمه یا عبارت جدید (مثلا Double Exposure) در متون ورودی می‌تونه نتیجه‌های جدیدتر و بهتری برای شما تولید کنه.

همین باعث شد که من کمی به اتفاقاتی که زیر کاپوت داره می‌افته، شک کنم. شکم هم تا حد خوبی به یقین تبدیل شد وقتی دیدم چند پروژه مشابه (که هنوز عمومی نشدند) مدعی «استفاده از چند مدل» شدند، اما چطور؟

خب یکی از راه‌هایی که میشه این حرکت رو زد اینه که چندین مدل روی چندین قضیه متفاوت ترین/فاین‌تیون بشه و بعد با یک if ساده، ورودی‌ها رو به اون‌ها فرستاد. اما سوال اینه که من چه کردم؟ آیا چندین مدل ترین کردم؟ خیر.

ترکیب چند مدل با هم و نتایج آن‌ها

اگر کمی با هوش مصنوعی آشنا باشید، احتمالا می‌دونید مدل‌های هوش مصنوعی وزن و بایاس‌هایی هستند که به داده‌های مختلف داده شدند.

حالا اگر این مدل‌ها ساختار مشابهی داشته باشند، این امکان وجود داره که اون‌ها رو با هم ترکیب کنیم و نتیجه‌های بهتری بگیریم. خب کاری که کردم این بود که اول از همه مانی رو با Open Journey و یکی دو مدل دیگه ترکیب کنم (و اسم این مدل رو new_mann_e_2 گذاشتم) و بعد یک سری مقایسه با openjourney انجام دادم.

اما حالا نیاز بود که کمی از خوبی‌های میدجرنی رو هم اینجا داشته باشیم 😁 پس حالا چه کردم؟ هیچی. آمدم و وزن‌های مانی جدید و اوپن‌جرنی رو با هم ترکیب کردم.

نتایج آزمایش‌ها

متن‌های ورودی همونطوری که مشخصه یک منظره (در سبک wasteland و cyberpunk) یک چهره (در سبک و سیاق نقاشانی چون Alphonse Mucha) و یک وسیله نقلیه (نقاشی فانتزی) بودند و مقدار seed (که تعیین‌کنندگی خوبی در جزییان نقاشی داره) در هر سه تصویر، یکی نگه داشته شد.

می‌تونم بگم به جرات مانی ۴ – که در حال حاضر در حال کار روش هستم – با متد «چند مدل» به خوبی تونسته از پس خودش بربیاد و این یعنی که همه چیز چقدر خوب داره پیش میره و با یکم تغییر و یکم ترکیبات جدید، می‌تونه نتایج به شدت بهتری هم بهم بده.

فاین تیون کردن مانی با داده‌های شما

یکی از سوالاتی که در مورد مانی ازم پرسیده شد، دقیقا همین بود که چطور میشه مانی یا حتی خود میدجرنی رو فاین‌تیون کرد. در مورد میدجرنی باید بگم متاسفم، این مدل هیچیش آزاد یا متن‌باز نیست و نمیشه کاری کرد.

اما مانی رو میشه به کمک Dream Booth فاین‌تیون کرد و احتمالا بعدتر در مورد اون هم خواهم نوشت. ولی اگر شما ایده یا دیتایی دارید، می‌تونید به من بگید تا در نسخه ۴ اضافه کنم و مدل بهتری در نهایت ارائه کنم.

جمع‌بندی و سخن آخر

بالاخره این پست هم به پایان رسید و وقتشه که یک جمع‌بندی روی مطالب گفته‌شده داشته باشیم. همونطوری که در شروع مطلب گفتم، یکی از دغدغه‌های من از زمانی که این مطالعه/تحقیق خاص رو شروع کردم این بود که تصاویر بهتری بتونم تولید کنم و این تصاویر در نظرم بود که به خروجی‌های Midjourney نزدیک یا ازشون بهتر باشند.

این یکی از وجوه این مطالعه/تحقیق بود و وجه دیگرش هم این که چطور ترکیب وزن‌ها و بایاس‌های چند مدل مختلف (که البته از معماری یکسانی تبعیت می‌کنند) می‌تونه در نتیجه اونها تغییر ایجاد کنه.

خب باید بگم که این فاز آکادمیک و تحقیقاتی به خوبی پیش رفته و کمی جای توسعه و تحقیق فنی برای این پروژه‌ها باقی می‌مونه که در آینده‌ای نه چندان دور، بروزرسانی‌های اون هم منتشر میشه.

در نهایت بگم که اگر دوست دارید محتوای مشابه و به زبان انگلیسی بخونید می‌تونید بلاگ انگلیسی من، اگر دوست دارید محتوای سابق من رو بخونید ویرگول من (بنا به پاره‌ای از اتفاقات دیگر در ویرگول نمی‌نویسم) و اگر هم علاقمند به بینایی ماشین هستید جامعه بینایی ماشین رو بخونید.

یادتان هم نره که یادگیری مستمر به بهبود زندگی شما در هر شرایطی کمک می‌کنه و همیشه شما رو می‌تونه به شخص بهتری تبدیل کنه ✌️

Share

رفتار انجمن اوبونتو مقابل یک پروژه آزاد (یک انتقاد از عملکرد مدیریت انجمن اوبونتو)

مدتی بود که دوست نداشتم مطلبی بنویسم اما خب الان، مجبورم که این بلاگ رو پیرامون رفتاری که دوستان مدیر در انجمن اوبونتو ایران داشتند، مکتوب کنم. قضیه از اونجایی شروع میشه که کلی بحث در این فروم شروع شد. نخستین بحث برمی‌گرده به تاپیکی که من درش سوال کردم «چرا دبیان؟» و خب می‌تونید از اینجا بخونیدش 🙂

یک سری شوخی اینجا شد، اما بعد از مدتی بحث و بررسی در فروم با تعدادی از دوستان – که همگی از نظرم نوجوانان و جوانان باهوش و مستعدی هستند – تصمیم بر این شد که پروژه جبیر (+،+ و +) رو احیاء کنم. البته انتظار برخورد جالبی از سمت مدیریت نداشتم (با توجه به این تجربه) ولی خب اول قضیه، کار نسبتا خوب پیش رفت. کلی بحث و بررسی سر معماری ARM شد، در مورد x86 شد، حتی در مورد دیزاین وبسایت، لوگو و … شد. در نتیجه چه اتفاقی افتاد؟ این که من وبسایت پروژه جبیر رو احیا کردم 🙂 خیلی جدی هم در مورد محصولات مبتنی بر نرم‌افزار آزادی که می‌خواستم در این پروژه داشته باشم بحث شد، عمده بحث هم همین نوجوانانی که ازشون صحبت به میان میاد، پیش می‌بردند و من عملا نظاره‌گر بودم.

خلاصه این که دو تا تاپیک با موضوعات یکی «چرا دبیان» (که عمده بحثش پیرامون این که چرا دبیان گزینه خوبیه و بخش کمیش چرا ARM خوبه) ایجاد کردم که ترجمه فارسی یکی از پست‌های پروژه جبیر بود. در این تاپیک به طور خاص اصلا از پروژه جبیر، صحبتی به میان نیامد.

تاپیک دوم هم در مورد اهمیت معماری x86 در ساخت یک پروژه توزیع لینوکس بود و باز هم آنطور که باید و شاید، اسمی از پروژه نیامد. اما خب ناگهان دیدم که پست‌ها همه حذف شدند و این اخطار هم دریافت شده:

و حالا من پست مرتبط با «قوانین و خط مشی» انجمن اوبونتو رو بررسی کردم، تنها دو بند هستند که به «پروژه» اشاره دارند و هیچ کدام به طور خاص، به پروژه جبیر اشاره نکردند.

اولین بند اینه:

۳. شما توافق میکنید که هیچ‌گونه ارسال هرزنامه، انبوه‌ارسال، تبلیغات، نامه‌های زنجیروار، طرح و برنامه‌های شرکتهای هرمی و درخواست‌های نامربوط و نامعقول، بصورت خصوصی یا عمومی نخواهید داشت.

و البته دومیش این:

. انجمن‌های فارسی اوبونتو از پذیرش هر گونه عنوانی که به هر نحوی کاربران را به استفاده از نرم‌افزارهای غیرآزاد مایل نماید معذور است و حق حذف، قفل، انتقال یا ویرایش چنین ارسال‌هایی را برای خود محفوظ می‌داند. مسلما انواع مقایسه بین نرم‌افزارهای آزاد و غیرآزاد شامل این بند نمی‌شود.

که مورد دوم، حتی قانون هم نیست بلکه در بخش «اخطارات و الزامات» قرار گرفته، یعنی در شرایط خاصی امکان نقضش هست (که خودشون توضیح دادند، مثل زمانی که شما ۱. دارید مقایسه می‌کنید و ۲. آلترناتیوی برای اون نرم‌افزار نیست.

حقیقتش رو بخواهید، بروز چنین رفتاری از انجمنی که شاید الان «تنها هاب نرم‌افزار آزاد در وب» به حساب میاد، تا حد خیلی زیادی شرم‌آوره و جالب نیست، دیگه خود دانید 🙂

Share

نصب Phosh روی دبیان

گنوم، چندسال اخیر رو در حال بهبود تجربه کاربریش روی دستگاه‌هایی مثل گوشی‌های همراه و همچنین تبلت‌هاست. در کل، داره برای یک انقلاب در صفحات لمسی آماده میشه. حالا، یک رابط کاربری جالب به اسم Phosh (مخففی برای Phone Shell) ارائه کرده که روی دبیان (بله، حتی دسکتاپ!) قابل نصب و اجراست.

نماگرفت زیر، نماگرفتی از صفحه قفل این رابط کاربریه:

و خب همونطوری که می‌بینید، کار تمیز و نسبتا زیباییه. حالا سوال اینه چطور نصبش کنیم؟ در ادامه مطلب مفصلا توضیح میدم 🙂

نصب قدم به قدم Phosh روی دبیان

گام اول: نصب دبیان

توجه داشته باشید که دبیان مد نظر من اینجا، دبیانیه که شما روی پردازنده‌های x86 نصب می‌کنید. اگر قراره این دبیان روی رزبری پای باشه، یا سیستم شخصی شما صفحه لمسی داره، می‌تونید این قسمت رو نادیده بگیرید. اما من نصب رو روی یک ماشین مجازی با کمک Virtual Box انجام دادم. آموزش نصب دبیان، در اینترنت زیاد پیدا میشه؛ فلذا اینجا حرفی از آموزش نصب به میان نمیارم. فقط حواستون باشه نسخه Net Install دبیان رو دانلود و نصب کنید که چیز اضافه‌ای نداشته باشیم. برای دانلود دبیان هم می‌تونید به وبسایت دبیان مراجعه کنید و آخرین ISO مورد نظر رو بگیرید.

گام دوم: قبل از نصب Phosh چه کنیم؟

خب اولین کاری که قبل از نصب Phosh کنید اینه که با خودتون یک فنجان قهوه یا نوشیدنی خنک داشته باشید چون پروسه نصب ممکنه شما رو خسته و تشنه کنه. بعد از اون، بد نیست که سیستم رو بروزرسانی کنید. بعد از بروزرسانی سیستم‌عامل، نوبتی هم باشه نوبت اینه که مستقیم بریم سر نصب Phosh. اینجا هم جا داره نکته مهم رو متذکر بشم که من phosh رو از مخازن نصب می‌کنم تا صرفا کنجکاوی رفع شده باشه وگرنه روش درست‌تر نصب phosh نصب از کد منبعه (حداقل اگر روی سیستم x86 و به قصد توسعه نصب می‌کنید).

گام سوم: نصب و راه‌اندازی Phosh

خب برای نصب کافیه که دستورات زیر رو اجرا کنیم:

sudo apt install phosh-core

و اگر می‌خواهید Phosh شما مناسب تبلت باشه:

sudo apt install phosh-tablet

و اگر می‌خواهید نسخه کامل Phosh رو نصب کنید، کافیه که دستور رو به این شکل تغییر بدید:

sudo apt install phosh-full

و بعد از نصب حدود یک گیگابایت بسته‌های نرم‌افزاری، کل میزکار گنوم مخصوص صفحات لمسی یا همون Phosh برای شما نصب خواهد شد. پس از نصب، کافیه که اول سرویسش رو فعال و سپس راه‌اندازی کنیم:

sudo systemctl enable phosh
sudo systemctl start phosh

سپس، صفحه قفل (که بالاتر عکسش رو قرار دادم) و بعد از اون، صفحه ورود رمز به شما نمایش داده میشه.

پس از ورود رمز، وارد صفحه منوی اصلی می‌شیم که از اونجا می‌تونیم به نرم‌افزارها و ابزارهای نصب شده روی سیستم دسترسی داشته باشیم:

خب، حالا با خیال راحت می‌تونیم از Phosh استفاده کنیم و لذت ببریم 😁

نکات مهم

از اونجایی که Phosh نرم‌افزار نوپا و نسبتا جدیدیه، لازمه چند نکته مهم رو در موردش متذکر بشم:

  • نسخه خاصی ازش در مخازن دبیان پایدار موجوده که خب برای یک تست دم دستی و ویرچوال‌باکسی، بهترین گزینه بود (حداقل برای من) و خب قاعدتا روی مخازن تستینگ و ناپایدار هم قرارش دادند. موقع نصب، مراقب باشید تا به ضررتون نشه 😁 ترجیحا نصب رو روی یک ماشین مجازی انجام بدید.
  • این میزکار خاص، برای صفحات لمسی خیلی بهینه شده و استفاده ازش با ماوس و کی‌برد تا حد زیادی سخته. اگر صفحه لمسی دارید که می‌تونید به سیستمتون وصلش کنید، احتمالا تجربه کاربری بهتری داشته باشید.
  • بعضی نرم‌افزارها اندازه‌شون برای من مشکل داشت (که احتمالا برمی‌گرده به ویرچوال باکس). اگر در جای دیگری امتحان بشه شاید اندازه صفحه و برنامه‌ها، مناسب باشه.

کدوم توزیع‌ها از Phosh پشتیبانی می‌کنند؟

این هم سوال مهمیه، تا جایی که دیدم PostmarketOS (که برمبنای آلپاین ساخته شده) و همچنین Mobian (که برپایه دبیانه) از این میزکار (یا بهتر بگم پوسته) پشتیبانی می‌کنند. در مورد سایر توزیع‌ها/سیستم‌عامل‌هایی که ممکنه گنوم رو اجرا کنند، ایده‌ای ندارم.

جمع‌بندی

این بلاگ اصلا قرار نبود نوشته شه، ولی امروز از سر خستگی (دقیقا خستگی 😂) جستجو کردم ببینم Phosh چطور می‌تونه روی دبیان دسکتاپ نصب بشه. امتحانش کردم و به نظرم پروژه تمیز، باحال و آینده‌داری اومد. حالا هم تستش کردم و هم یک سری ایده‌ اومد به ذهنم. در آینده، احتمالا بیشتر با Phosh کار کنم و در موردش بنویسم. در آخر هم بابت وقتی که صرف کردید و این مطلب رو خوندید، ازتون تشکر می‌کنم.

Share

[آرشیو مطالب قدیمی] : مصاحبه با محمدرضا حقیری ، مدیر پروژه جبیر

پروزه جبیر ، پروژه ای نو پاست که هدف آن تهیه یک سیستم عامل مناسب برای آموزش لینوکس به کاربران است. پس از بحث با آقای حقیری موضوع مصاحبه و درج آن در سایت برای معرفی پروژه پیش آمد و قرار شد من سوالاتی که حدس می زنم یک کاربر ممکن است در مورد این سیستم عامل داشته باشد را بپرسم و ایشان جواب ها را فرستادند. در ادامه می توانید این مصاحبه را بخوانید.

خودتون رو برای دوستان معرفی کنید.

سلام :) . محمدرضا حقیری هستم متولد نهم خرداد ماه ۱۳۷۵ در شهر تهران و اکنون ساکن بندرعباس. در حال حاضر در دوره متوسطه مشغول تحصیل هستم. از جمله مقامات و رتبه هایی هم که کسب کردم ، میتونم به رتبه سوم رباتیک مدارس راهنمایی استان تهران ، رتبه دوم تولید محتوای آموزشی (نرم افزار) در استان تهران ، رتبه اول مسابقات گرافیک رایانه استان هرمزگان و رتبه ۶۴ المپیاد کامپیوتر کشوری. همچنین طرح سیستم عامل جبیر هم رتبه ۱۲ کشوری جشنواره جوان خوارزمی رو کسب کرده :)

از کی شروع به فعالیت کردید؟

از سال ۱۳۸۹ به فکر طراحی سیستم عامل بودم. البته اون زمان قصد داشتم همه چیز رو خودم بنویسم. ولی با Remastersys آشنایی پیدا کردم اما چون اینترنت پرسرعتی نداشتم ترجیح دادم توزیع لینوکسی رو روی ماشین مجازی پرورش بدم و ازش خروجی بگیرم (ویرچوال باکس چنین کاری رو میکنه) و بعد اسمش رو prp-e خالی گذاشتم. البته prp-e مخفف اسم کلوپ رباتیک مدرسه راهنماییمون بود (پرشیا رایان پرداز شرق). و در سال ۱۳۹۰ که همکار جدیدی در پروژه پیدا شده بود و تیم «ایران هکینتاش» رو تشکیل دادیم ، این توزیع رو پرورش دادیم و خروجی ISO رو با Remastersys تهیه کردیم. اواخر ۹۰ بود که IranHackintoshOS رو بین خودمون رد و بدل کردیم :). کمی کار اون موقع سخت بود چون که دو نفر بودیم و اطلاعات لینوکسی متوسطی داشتیم. اما اینکه توزیعی رو ایجاد کرده بودیم که ویژگی هایی از سیستم عامل مک به ارث برده باشه. اما در نسخه ۱ که به «جبیر او اس» مشهور هست ، سعی کردیم یک توزیع همه جانبه تهیه کنیم .

هدف اصلی پروژه چیست؟

یک سیستم عامل عام منظوره که تمرکز خاصی رو دسکتاپ و کاربران تازه کار داشته باشه. یعنی کاربران بتونند بعد از نصب و کار روی این سیستم عامل بتونند به راحتی روی سایر سیستم عاملها(حتی مک یا ویندوز یا BSD ها و …) سوییچ کنند.

تیم دارید؟ چند نفر هستند؟

بله. تیم ۳ نفره متشکل از من (محمدرضا حقیری) ، رضا باقرزاده و محمد اسماعیلی.

الان در چه وضعیتی هستید؟

بستگی داره منظورت چی باشه :) . خب وقتی از «وضعیت» سوال به میون میاد کمی میشه گفت که وضعیت تیم ، که خدا رو شکر خوبه. وضعیت مالی  و … هم در حد مطلوبی هست که بتونه یک Foundation کوچک رو زنده و سر پا نگه داره.

تا حالا چند تا نسخه منتشر کردین و تو هر کدوم جه پیشرفت هایی بوده؟

نسخه ۱ — ۲۵ فروردین ۹۱ — ویژگی خاصی نداشت.
نسخه ۲ — شهریور ۹۱ — میزکار Legendary UI رو در خود داشت.
نسخه ۳ — آبان ۹۱ — اولین توزیعی که به طور رسمی مبتنی بر گنوم ۳.۶ بود (قبل از Ubuntu GNOME Remix منتشر شد).

چرا جبیر رو با میزکار های مختلف منتشر می کنید و روی یه میزکار تمرکز نمی کنید؟

برای اینکه دوست داریم همه ازش استفاده کنند. مثلا شما توزیعی مثل چاکرا رو ببینید ، حتی الان فقط به ۶۴ بیت محدود شده! این در صورتی هست که جبیر فقط در ۳۲ بیت منتشر میشه و امکان اجرا روی همه سیستم ها رو داره.

چرا یه میزکار برای جبیر نمی سازید و از گنوم شل و xfce و بقیه میزکار ها استفاده می کنید؟

چون توسعه میزکار سخت و هزینه بر و همچنین کار بر هست. مثلا KDE از سال تولد من (۱۹۹۶) متولد شده و الان ۱۷ سال هست که داره توسعه داده میشه :)

خیلی از منتقدان شما ازتون این سوال رو می پرسند که چرا روی یه توزیع مثل اوبونتو کار نمی کنید و یه سیستم عامل جدید ساختین. جواب شما به این دوستان چیه؟

خب این رو از حرفهای قبلی من میشه برداشت کرد. برای اینکه این توزیع نمونه ای هست که کل کامپیوتر -علی الخصوص لینوکس و یونیکس – رو به کاربر آموزش میده .

نظرتون در مورد توزیع های ایرانی مثل آریویس چیه؟

همه توزیع های ایرانی خوب هستند. مخصوصا پارسیکس ، آریوس و زمین. البته پارسیکس و پارسیدورا تقریبا میشه گفت که روند توسعشون خیلی کند هست (مطلبی در وبلاگم هست در موردشون). ولی آریوس که تقریبا همزمان با مینت و زمین هم که توزیع نسبتا مستقل هست خوب و کارامد هستند. گفتم کارامد! راستی کارامد لینوکس هم خوب بود. با این اوصاف هزاران سیستم عامل ایرانی قبل از «قاصدک» بودند ولی نمیدونم چرا عنوان «اولین سیستم عامل ایرانی» رو به خودشون نسبت دادن :))

چرا کاربر باید اوبونتو یا دیگر توزیع های لینوکس رو رها کنه و بیاد سمت جبیر؟

فکر کنم به اندازه کافی روی این مورد در بالا توضیح دادم :)

چه چیز جدیدی رو تصمیم دارید توی جبیر پیاده سازی کنید یا که پیاده سازی کردید , تا منحصر به فرد بشه؟

اول از همه لجندری یو آی ، بعد از اون پروژه های EasyShell و JetGet که اولی یک شل یونیکس و دومی یک رابط متنی برای همه مدیر بسته های یونیکس و لینوکس هست. تا الان Legendary UI پیاده سازی شده.

در مورد بهینه سازی سیستم عامل برای صفحه های لمسی چه کار هایی انجام شده یا انجام خواهد شد؟

Legendary UI گام اول بود تا فضای خالی زیادی رو دسکتاپ ایجاد بشه. بعد از اون روی Plasma Active که شرکت Basyscom و KDE مشترکا منتشرش کردند رو انتخاب کردیم.

فکر نمی کنید جبیر کمی نیاز به تبلیغ داره تا بین کاربران شناخته بشه؟به نظر میرسه آریوس تو این زمینه بهتر از شما نیست؟

 خب آریوس قدیمی تر هست. همچنین در دایرکتوری دیستروواچ موجوده. توزیع های نوپا ابتدا کمی با مقاومت جوامع ، بعد از مدتی کم توجهی و در نهایت توجه آنها مواجه میشند. حتی اگر در فرومهای اوپن سوزه و اوبونتو بچرخید متوجه خواهید شد همه جا همینه.

اگه نکته یا حرفی با خوانندگان دارید بگید.

نکته یا حرف خاصی ندارم :) با تشکر  آرزوی توفیق روز افزون برای همه :)

پیوندهای مرتبط

Share

نصب کتابخانه tensorflow روی Raspberry Pi

حدود بهمن یا اسفند سال ۱۳۹۹ بود که من، یک عدد رزبری پای ۴ مدل B (لینک) خریداری کردم که باهاش یه سری ایده رو عملی کنم. از وقتی که این دستگاه رو خریدم، مدت زیادی تقریبا گذشته اما خب چند هفته اخیر، شدیدا با این دستگاه در حال کشتی گرفتن و تست ایده‌های مختلف هستم. یکی از ایده‌های من پروژه‌ای بود که تا حد زیادی به هوش مصنوعی (و بخصوص tensorflow) نیازمند بود. مشکلی که داشتم این بود که در خود مخازن PyPi ای که روی رزبری پای در دسترسه، هیچ ساخت درستی از tensorflow وجود نداره.

اما خب، نمیشه در دنیای تِک ناامید شد؛ به همین خاطر دنبال راهکار و راه حلی گشتم که بتونم تنسرفلو رو روی رزبری پای داشته باشم. یکم سخت‌تر از حالت عادی (که استفاده از pip بود) شد اما ارزشش رو داشت. چون تونستم بدون مشکل مدلی که مدنظر داشتم رو لود و استفاده کنم. همچنین لازمه ذکر کنم که در این مطلب قراره یاد بگیریم چطور خود تنسرفلو رو نصب کنیم و به TFLite کاری نداریم.

رزبری پای چیه؟

رزبری پای (Raspberry Pi) یک کامپیوتر تک‌برد (SBC یا Single Board Computet) محسوب می‌شه که توسط یک بنیاد غیرانتفاعی به همین اسم در بریتانیا طراحی شده (البته تولیدش مثل عمده محصولات دیگر، در کشور چین انجام میشه). این بردها معمولا یک پردازنده ARM دارند و می‌شه روی اونها سیستم‌عامل نصب کرد. خیلی‌هاشون هم ورودی/خروجی عام‌منظوره (General Purpose Input/Output) یا همون GPIO دارند که می‌تونن رابطی بین این کامپیوتر و قطعات الکترونیکی دیگر باشند.

این کامپیوترهای کوچک – که در ابعاد یک کارت اعتباری ساخته شدند – اسباب‌بازی خوبی برای برنامه‌نویسان و مهندسین کامپیوتر به شمار میان. بسیاری از متخصصین و علاقمندان از رزبری پای استفاده می‌کنن تا ایده‌ها و پروژه‌هاشون رو پیاده‌سازی کنن. البته لازم به ذکره که خیلی‌ها هم حتی محصولاتشون رو برپایه رزبری‌پای توسعه دادند (پس اگر دوست داشتید یکی تهیه کنید و باهاش بازی کنید، درنگ نکنید 😁)

تنسرفلو چیه؟

از اونجایی که این مطلب، در مورد نصب Tensorflow روی رزبری پای بود، لازمه که کمی هم در مورد تنسرفلو توضیح داده بشه. تنسرفلو یک کتابخونه نرم‌افزاری آزاد و متن‌بازه که توسط تیم Google Brain توسعه‌ داده میشه. این کتابخونه، به ما اجازه میده که پروژه‌ها و پروسه‌های یادگیری ماشین، هوش مصنوعی، یادگیری عمیق، استنباط آماری و … تا توسعه شبکه‌های عصبی مصنوعی رو انجام بدیم. به خاطر پشتیبانی گوگل از این کتابخونه، به یکی از محبوب‌ترین و پراستفاده‌ترین کتابخونه‌های هوش مصنوعی تبدیل شده (مثلا در پروژه خودران، من از این کتابخونه استفاده کرده بودم).

اما یک مشکل بزرگی با نصب تنسرفلو روی رزبری پای مواجه هستیم. مشکل اینجاست که وقتی دستور روتین pip برای نصب تنسرفلو رو بزنیم، اتفاق خیلی خاصی رخ نمی‌ده، جز این که یک ارور مبنی بر پیدا نشدن این کتابخونه در مخازن  PyPi متعلق به پلتفرم ما نشون داده میشه. پس باید چی کار کنیم؟ خب در ادامه قراره که همین داستان رو بررسی کنیم و به نتیجه درستی برسیم.

نصب Tensorflow روی Raspberry Pi

قبل از هرچیزی باید بگم که من این پروسه رو روی Raspberry Pi 4 Model B (با رم ۲ گیگابایت) و سیستم عامل Raspberry Pi OS نسخه Bullseye (بله درست حدس زدید، سیستم‌عامل رزبری پای دبیانه 😁 و صدالبته که می‌تونید توزیع‌های دیگری هم روش نصب کنید) و ویرایش ۶۴ بیتی طی کردم. بسته به مدل رزبری شما و سیستم‌عاملتون، این پروسه می‌تونه متفاوت باشه.

نصب نرم‌افزارهای پایه

ما برای این که بتونیم تنسرفلو رو نصب کنیم، نیاز به نصب تعداد زیادی نرم‌افزار روی خود سیستم‌عامل داریم. به نظر بهتره که ابتدا، لیست بسته‌های مخازن رو بروزرسانی کنیم:

sudo apt update

و صدالبته بهتره که خود سیستم‌عامل هم بروزرسانی‌های آخرش رو دریافت و نصب کنه:

sudo apt full-upgrade

پس از این که این مراحل انجام شد، تعداد زیادی نرم‌افزار رو به این شکل نصب می‌کنیم:

sudo apt install gfortran libhdf5-dev libc-ares-dev libeigen3-dev libatlas-base-dev libopenblas-dev libblas-dev liblapack-dev

عمده این نرم‌افزارها رو بر اساس پیام‌های خطایی که دریافت می‌کردم پیدا کردم، چرا که وقتی شما روی سیستم دسکتاپ یا لپتاپ خودتون تنسرفلو نصب می‌کنید، بسیاری از این‌ها (متناسب با معماری پردازنده) پیش‌تر نصب شدند اما سیستم‌عامل‌هایی که روی رزبری نصب می‌کنیم چنین حالتی ندارند. بهرحال، همه نرم‌افزارهای پایه‌ای که نیازه از مخزن دبیان نصب بشه، در این دستور موجوده (طبیعتا اگر نیاز به بسته دیگری باشه بعدا این مطلب ویرایش میشه)

نصب و بروزرسانی بسته های پایتونی

خب ما تعدادی پیش‌نیاز پایتونی هم داریم (که این‌ها رو اکثرا حتی در وبسایت تنسرفلو هم می‌شه پیدا کرد) که با دستورات زیر نصبشون می‌کنیم:

pip3 install pybind11
pip3 install Cython==0.29.21
pip3 install h5py==2.10.0

و سپس بسته setuptools رو هم بروزرسانی می‌کنیم:

pip3 install --upgrade setuptools

و این یکی رو هم نصب می‌کنیم (چرا که باید فایل تنسرفلو رو با این بزرگوار دانلود کنیم)

pip3 install gdown

دانلود و نصب Tensorflow

خب ابتدا به کمک gdown فایل wheel (فایل‌های wheel فایل‌هایی هستند که pip می‌فهمه باید نصبشون کنه) مربوط به نسخه مورد نظر تنسرفلو رو دانلود می‌کنیم:

gdown https://drive.google.com/file/d/1YpxNubmEL_4EgTrVMu-kYyzAbtyLis29

توجه کنید که اگر این دستور کار نکرد هم جای نگرانی نیست، می‌تونید این لینک رو باز کنید و فایل رو خودتون دانلود کنید.

سپس کافیه که با اجرای این دستور:

pip3 install <TENSORFLOW WHL FILE>.whl

نصب رو انجام بدید.

ضمنا، از اونجایی که ممکنه بعدتر نسخه‌ها تغییر کنن، بهتره که این صفحه رو هم هر چند وقت یه بار چک کنید تا اگر نیاز بود نسخه تنسرفلو رو تغییر بدید، فایل مربوطه رو دانلود کنید.

جمع‌بندی

مدتهای زیادی میشه که دوست دارم در مورد پروژه‌هایی که در حوزه «اینترنت چیزها» یا همون IoT انجام میدم هم بنویسم. اما متاسفانه پروژه‌های سخت‌افزاری، وقت زیادی از آدم می‌گیرن و وقتی وقت آزاد زیادی نداشته باشید، معمولا به پروژه‌های سخت‌افزاریتون هم آنچنان نمی‌تونید رسیدگی کنید. به همین خاطر مدتی میشه که در تلاشم تا پروژه‌های شخصی و صدالبته کاریم در حوزه بینایی ماشین رو با IoT ترکیب کنم و به این شکل این حوزه رو هم وارد کارهای روتین و اصلیم کنم که وقت هم همیشه براشون باشه 😁

تست چند پروژه بینایی ماشین روی Raspberry Pi شروعی برای این دوران از زندگی منه. راستی، اگر دوست دارید نقشه راه بینایی ماشین رو داشته باشید می‌تونید بیایید اینجا، اگر دنبال ایده برای پروژه‌ها هستید هم اینجا رو بخونید. حتی می‌تونید به ما در جامعه بینایی ماشین هم ملحق بشید و اشتراک تجربه و دانش کنید.

در پایان، ضمن تشکر از این که وقت گذاشتید و این مطلب رو خوندید، باید بگم که هنوز می‌تونید من رو به یک فنجان قهوه مهمان کنید 🙂

Share