بایگانی برچسب: s

اقتصاد API محور – چگونه Wrapper ها ما را به کشتن خواهند داد؟

مدت زیادی می‌شد که هرجا برای جذب سرمایه یا حتی حمایتی برای پلتفرم هوش مصنوعی مانی می‌رفتم، سوال اصلی این بود «چرا یک API از دالی یا میدجرنی نمی‌گیری خودتو راحت کنی؟» و حتی با این که خیلی هم حرف بی‌راهی نیست و تولیدکننده تصویر چیز خاصی نیست که بابت دیتا بخواهیم نگرانی بزرگی داشته باشیم، پاسخ‌های متعددی می‌دادم.

و خب طبیعیه که در طی چند سال گذشته سرویس‌های زیادی مانند اول‌ای‌آی اومدند که به شما امکان ساخت wrapper روی APIهای مدل‌های زبانی و تصویری متعددی رو میدن. در این مطلب، میخواهیم یک بررسی جامعه داشته باشیم که چرا این API wrapper ها می‌تونن ما و کسب و کارمون رو به ته دره هدایت کنند 🙂

اصلا API Wrapper یعنی چی؟

در دنیای هوش مصنوعی ما دو تا راه داریم که یک محصول بسازیم. تقریبا میشه گفت بسته به شرایط، یکی می‌تونه نسبت به اون یکی برتری داشته باشه اما در این مطلب، میخواهیم ببینیم که «معایب» ساخت API Wrapper چیه. به همین خاطر اول به این پرسش باید پاسخ داد که «اصلا API Wrapper یعنی چی؟»

فعل wrap در زبان انگلیسی یعنی چیزی که به چیز دیگر احاطه پیدا می‌کنه و اون رو می‌پوشونه. یعنی ما ابزاری بسازیم که در واقع فقط فرانت‌اند یک API معروف (مثل OpenAI) باشه.

حالا خیلی‌ها این API رو مستقیم از OpenAI یا DeepSeek یا MiniMax تهیه می‌کنند، یا از واسطه‌های خارجی مثل UseAPI و OpenRouter و یا این که از واسطه داخلی مثل اول‌ای‌آی و لیارا.

در این مقاله، کاری نداریم که API از کجا تهیه میشه، بلکه اصل داستان اینه که چرا این روش، در خیلی موارد روش خوبی برای توسعه محصول نیست و راه‌حل‌های جایگزین چی می‌تونه باشه.

چرا ساخت API Wrapper ایده خوبی نیست؟

در اینجا مواردی رو میارم که ساخت API Wrapper ایده خوبی نیست. شاید در پستی در آینده، مواردی رو برشمردم که اتفاقا می‌تونه ایده خوبی هم باشه.

در حال حاضر، تمرکز ما روی اون دوستانیه که با API دمو می‌کنند و مدعی میشن مدل خودشونه و این داستانا که اتفاقا عمدتا هم وقتی به سیستم‌های Air Gap یا لوکال میان، تازه مشخص میشه دموشون چقدر دروغ و دغل بوده.

خلاقیت رو ازمون می‌گیره

اولین و شاید مهم‌ترین بخش استفاده از APIها دقیقا اینه که خلاقیت ما رو می‌گیره. مثلا در نسخه‌های اولیه مانی، یک جا روشی که «میدجرنی» برای تولید عکس پیش می‌گرفت رو برای ساخت تصویر با کمک مدل خودمون تست کردم و نتیجه‌ش رو می‌تونید از این لینک مطالعه کنید.

اینجا، اگر خودم دست به Google Colab و Stable Diffusion نمی‌بردم، قاعدتا امکان این که بتونم پروسه میدجرنی رو تا حد زیادی مهندسی معکوس کنم، وجود نداشت.

جریان داده دست خودمون نیست

جریان داده در کسب و کارهای مختلف مهمه، کدهای شما، نامه‌های اداری و اطلاعات مشتریانتون مهمه. نتیجتا اگر میخواهید امنیت بالاتری رو داشته باشید، بهتره از APIها استفاده نکنید.

یا اگر هم سراغ API ها می‌رین، برید سراغ خود تامین‌کننده‌های رسمی. به جز خود OpenAI و Anthropic و DeepSeek معمولا Open Router و Together AI هم جزء تامین‌کنندگان رسمی مدل‌های زبانی هستند. همچنین Fal AI, Runware و Replicate هم جزء تامین‌کنندگان رسمی مدل‌های ویدئویی و تصویری هستند و می‌تونید از این دوستان هم API رو تهیه کنید.

آفلاین نیست

آخرین و شاید یکی از مهم‌ترین ارکان APIها – بخصوص برای مایی که در ایران زندگی می‌کنیم – این موضوعه. این موضوع یک عیب بزرگه و خب میشه با ابزارهایی مانند Ollama تا حدی از پسش بر اومد.

چطور ممکنه API Wrapper به کشتنمون بده؟

سناریوها رو به ترتیب می‌نویسم، این‌ها توضیحات زیادی ندارند چون کاملا موردی بهشون رسیدم و اگر توضیحات اضافه‌ای به ذهنم برسه قطع به یقین، در مطلبی جداگانه همه رو توضیح میدم.

  • تعطیلی ارائه‌دهنده
  • قطع و وصل شدن API (چیزی که بخصوص در APIهای واسط مثل اول‌ای‌آی کاملا پیش میاد)
  • هک شدن API و لو رفتن دیتا
  • ارسال دیتا به واسطه‌هایی که ازشون مطمئن نیستیم
  • عدم کنترل روی محصول وقتی اینترنت با مشکل مواجه می‌شه.

ممکنه مشکلات دیگری هم در میان باشه، اگر شما هم چیزی به ذهنتون رسید می‌تونید همینجا در بخش نظرات بهم بگید.

جمع‌بندی

در کل API Wrapper نوشتن برای پروژه‌های عام‌منظوره، کار عجیب و بدی نیست و خب هزینه خروج و شکست رو به وضوح کمتر می‌کنه، در حالی که برای انجام کار جدی و حساس، گزینه مناسبی نیست. اگر هرکدوم از معایبی که برشمرده شد رو تونستید برطرف کنید، احتمالا گزینه مناسبی برای شما، پروژه یا کسب و کارتونه؛ در غیر اینصورت باید کمی Local تر فکر کنید.

در نهایت، ازتون ممنونم که وقت گذاشتید و این مطلب رو خوندید. باز هم اگر نظر و پیشنهادی پیرامونش داشتید، ممنون میشم در بخش نظرات همین بلاگ یا بخش گفتگوی کانال تلگرام به من بگید.

Share

یک تخم مرغ اضافه کن: رساله‌ای در باب اثر IKEA

احتمالا شما هم در دهه هشتاد شمسی، تبلیغ معروف تلویزیونی «به همین سادگی، به همین خوشمزگی، پودر کیک رشد» رو یادتون باشه. پودرهای کیک آماده، یکی از اختراعات جالب بشر بودند که هنوز هم فکر کردن بهشون برای من شخصا جالبه. اما موضوعی که وجود داره، اینه که این پودرها، باعث شدند مفهومی به اسم اثر IKEA یا IKEA Effect به وجود بیاد.

در این مقاله، قصد دارم که ربط پودر کیک آماده به آیکیا رو توضیح بدم و بگم که چرا مهمه که از اثر آیکیا در تولید محصول استفاده کنیم و در نهایت هم یک نمونه خیلی خوبی از اثر آیکیا رو با هم نظاره‌گر خواهیم بود.

پودر کیک آماده: مردها هم آشپزی می‌کنند!

در سال ۱۹۳۰ میلادی شرکتی با نام Duff and Sons محصولی به بازار ارائه کرد. پودر کیک آماده! این محصول با شعار مردها هم آشپزی می‌کنند سعی داشت بگه در حدی کار پختن کیک رو ساده کرده که آقایون هم می‌تونن صرفا با اضافه کردن آب یا شیر به این پودر و قرار دادنش در فر، کیک بپزند.

اما یک مشکلی به مدت دو دهه، گریبان این محصول رو گرفت. نه فقط شرکت Duff and Sons بلکه هر شرکت دیگری که پودر کیک تولید می‌کرد، چنین معضلی رو باهاش روبرو بود. نمی‌تونستند بفروشند.

اما چرا یک محصولی که همه جوره کامل بود نمی‌تونست بفروشه؟ آیا مساله اعتماد بود؟ آیا مساله کیفیت بود؟ نه. اتفاقا مشتریان هرچند اندک این شرکت‌ها، از کیفیت کیکی که به دست می‌آوردند راضی بودند و کاملا به تولیدکننده اعتماد می‌کردند.

باگ ماجرا جای دیگری بود. شاید جایی که این محصول سعی داشت به طور کلی دخالت انسان در پخت کیک رو حذف کنه و این خوشایند خیلی از افراد نبود. مثل همون کاری که خیلی‌ها انتظار دارند ایجنت‌های هوش مصنوعی انجام بدند.

یک تخم مرغ اضافه کنید!

بالاخره بعد از دو دهه که محصول «پودر کیک آماده» در بازار موجود بود، شرکتی به نام Betty Crocker اومد و یک ایده بهتری داد. این‌ها گفتند که چطوره خود مشتری هم بخشی از پروسه تولید کیک بشه؟

درسته که این محصول میخواست زحمت پختن کیک رو کم کنه، اما در عین حال این کاهش زحمت و هزینه تا حد خیلی زیادی هم خوشایندی فرایند پخت کیک رو کم می‌کرد. به همین خاطر این‌ها گفتن قبل از این که آب یا شیر به این پودر اضافه کنید، یک عدد تخم مرغ هم اضافه کنید.

همین هک ساده، باعث افزایش چند برابری فروش این محصول شد. اما حالا ربطش به آیکیا چیه؟ بهتره یه بررسی روی آیکیا داشته باشیم!

آیکیا: کسب و کار اضافه کردن تخم مرغ به پودر کیک

اگر در فضای کسب و کار و بخصوص حوزه لوازم خانگی فعال باشید حتما اسم آیکیا رو شنیدید. یک برند سوئدی که بخاطر یک موضوع خیلی معروفه:

هرچیزی که ازش می‌خرید رو خودتون باید سر هم کنید.

در واقع آیکیا کار طراحی، برش، سوراخ‌کاری و به طور کلی فرایندهای کارگاهی رو روی محصول مورد نظر مثل کتابخونه، انجام داده. شما فقط و فقط باید این‌ها رو به هم وصل کنید. حتی می‌تونید هزینه‌ای پرداخت کنید که کارشناسی از آیکیا بیاد و برای شما چنین کاری کنه.

اما چرا این موضوع «سرهم کردن کتابخونه توسط خودمون» خیلی مهمه؟ چون داره مشتری رو وارد پروسه تولید می‌کنه و این یعنی فروش حس به مشتری.

اگر دقت کنید، خیلی از برندهای معروف جهان، مثل اپل، رولکس، گوچی، لامبورگینی و … بیش از این که روی محصول تمرکز کنند دارند روی حسی که مشتری از محصولشون دریافت می‌کنه تمرکز می‌کنند. برای مثال شعار خودروساز ایتالیایی، فراری؛ این بوده که شما وقتی یک فراری می‌خرید که بخواهید برای خودتون کسی باشید. در واقع به این شکل خاص بودن خودروهای خودش رو نشون داده و این خاص بودن رو به مشتری هم انتقال داده.

این مورد که مشتری رو بخشی از فرایند تولید محصول کنیم، بخاطر همین حرکت آیکیا به اثر آیکیا معروف شده و حتی باعث شده که آیکیا طرفدار خاص خودش رو پیدا کنه. یک برندی که نه لاکچریه نه حتی عقبه خیلی خاصی داره و صرفا یک برند مبلمان و لوازم خانگی با کیفیت مطلوبه، بتونه برای خودش یک جامعه هواداری تشکیل بده و این رو با ایجاد یک حس خوب در مشتری تونسته داشته باشه!

اثر آیکیا در خدمت تکنولوژی

قبل از این که بخوام از نمونه‌های عملی اثر آیکیا در تکنولوژی صحبت کنم، لازمه ذکر کنم خود آیکیا، از اثر آیکیا در تکنولوژی استفاده کرده. چطور؟ خیلی ساده‌ست.

آیکیا از اولین برندهای لوازم خانگی بوده که تکنولوژی واقعیت افزوده رو به سیستم‌های نرم‌افزاریش من‌جمله وبسایت و اپلیکیشنش اضافه کرد و اینطوری حتی حس داشتن محصولاتش رو قبل از خرید هم تونست به کاربران منتقل کنه.

اما در یک سال اخیر، ابزارهای جالبی مثل Bolt یا v0 دیدیم. این ابزارها هم در واقع همین اثر آیکیا رو دارند در زمینه برنامه‌نویسی و تولید نرم‌افزار پیاده‌سازی می‌کنند.

این ابزارها به افرادی که تجربه زیادی در راه‌اندازی استارتاپ یا ساخت نرم‌افزار ندارند، کمک می‌کننده ایده‌هاشون رو بتونن پیاده‌سازی و ارزیابی کنند و اون دسته افرادی که کمی کارکشته‌تر بودند، تونستند از این ابزارها برای جلو انداختن کار خودشون نهایت استفاده رو ببرند و در مدت‌زمان بسیار کوتاهی، نرم‌افزارهایی بسازند که بتونه درآمدزایی داشته باشه یا اصلا به صورت کامل توسط یک موجودیت دیگر تملیک بشه.

خلاصه اثر آیکیا، یک حجم خوبی دوپامین رو در مغز مشتری شما ترشح می‌کنه و این امر باعث میشه مشتری شما نوعی اعتیاد به محصولتون پیدا کنه. احتمالا در آینده از این که چطور می‌تونیم این اثر رو در محصولاتمون داشته باشیم، بنویسم!

جمع‌بندی

در عصر امروز، جذب مشتری سخت‌تر از گذشته شده. بسیاری از محصولاتی که ما می‌سازیم، بهترش توسط غول‌های بازار ساخته و عرضه میشه و ما باید بتونیم از چنین آشفته‌بازاری، جان سالم به در ببریم. استفاده از هک‌های ساده‌ای مثل یک تخم‌مرغ اضافه کن یا همین اثر آیکیا، می‌تونه به راحتی جذب تعداد خوبی از مشتری‌های ما رو تضمین کنه. به همین دلیل، پس از مدت نسبتا طولانی دست به قلم (کی‌برد؟) شدم و این مطلب رو نوشتم تا اگر شما هم در حال توسعه محصولی هستید، به نکاتی که حول جذب مشتری با این هک‌های شناختی وجود داره توجهی دوچندان کنید.

ضمنا در حال حاضر که بحث اتوماسین و ایجنت‌ها داغه، لازمه بگم که یک دوره n8n ضبط کردم که از طریق آکادمی نُد در دسترسه و به صورت هفتگی هم آپدیت روی اون میاد. اگر علاقمندید می‌تونید در این دوره هم شرکت کنید.

در پایان امیدوارم موفق و موید باشید و از خیزش ربات‌ها هم نترسید 🙂

Share

خانواده‌ مدل‌های زبانی Xei برای اجرای روی دستگاه شما آمده‌است!

مدتی پیش، پروژه‌های مختلفی مثل مارال یا جبیر رو با هدف انتشار و ساخت یک مدل زبانی بزرگ با همون LLM (مخفف Large Language Model) شروع کرده بودم اما بحث این مدل‌ها و شاید همزمان شدن انتشار این‌ها با نسخه‌های جدیدی از پلتفرم‌های مانی و آتلیه، کمی باعث شده بود که از هدف اصلی دور بشیم.

در همین مدت، مدل ۸ میلیارد پارامتری هرمز منتشر شد که خب یک بازخورد بسیار خوب از جامعه فارسی‌زبان تونست بگیره. مدل هرمز، از طریق وبسایت هاگینگ‌فیس، کاملا در دسترس شماست و می‌تونید ازش استفاده کنید.

اما هرمز شد بخشی از یک پروژه بزرگتر، چرا که کمی دقت به بزرگان این حوزه، نشون از این بود که تقریبا همه شرکت‌های خوب و موفق در این حوزه، به جای این که «یک مدل» منتشر کنند «یک خانواده مدل» منتشر کردند که خب باید از این قضیه تا حدی الگوگیری می‌شد.

تصمیم به ساخت یک خانواده از مدل‌ها

از تولیدکنندگان بزرگ و تجاری مدل‌های جنریتیو که بگذریم، بسیاری از شرکت‌هایی که مدل‌های اوپن سورس تولید می‌کنن و نام‌داران این عرصه هم هستند (مثل Alibaba Cloud, DeepSeek, Mistral و حتی Meta) عموما به یک عدد مدل کفایت نمی‌کنند.

مدل‌هایی که این شرکت‌ها تولید می‌کنند عموما در یک «خانواده» قرار داره و این خانواده هم بر اساس تعداد پارامتر، توانایی استنتاج (یا همون Reasoning) توانایی بینایی ماشین (یا همون vision) و …، تعیین می‌شن. برای مثال یکی از مدل‌های معروف این حوزه که LLaMA نام داره و توسط شرکت متا ساخته شده، معمولا در یک نمونه کوچک (۷ یا ۸ میلیارد پارامتری)، یک نمونه متوسط (۱۱ یا ۱۳ پارامتری) و نمونه‌های بزرگ (۷۰ میلیارد پارامتر و بیشتر) تولید میشه.

اما خب یک مورد دیگری هم که به چشمم خورد، کاری بود که DeepSeek با R1 کرده بود. در واقع اومده بودن مدل‌های کوچکتر (از یک و نیم میلیارد تا هفتاد میلیارد پارامتر) رو با روش Distillation درست کرده بودند.

در واقع مدل‌هایی مثل LLaMA, Qwen, Mistral و … رو با داده‌هایی که از مدل دیپ‌سیک ۶۷۱ میلیارد پارامتری به دست آورده بودند، مجدد آموزش دادند که در اختیار افراد بیشتری قرار بگیره.

همین موضوع، باعث شد که به این فکر بیفتیم که در سال ۱۴۰۴ به جای این که هفته‌ای یک LLM ریلیز کنیم 😁 یک خونواده خوب از LLMها برای تمام فصول ریلیز کنیم که باز هم از DeepSeek V3 و ترین‌ کردن QLoRA و مرج کردن روی اون شروع شد.

اسم Xei از کجا میاد؟

پیش از این که بخواهیم در مورد خود مدل‌ها و روش اجراشون صحبت کنیم، کمی در مورد اسم توضیح بدم.

ریاضیدانان ایرانی مثل خوارزمی، موقعی که معادلات خاصی رو حل می‌کردند از عبارت «شیء» بعنوان مجهول استفاده می‌کردند. وقتی اروپایی‌ها آثار این دانشمندان رو به زبان‌های خودشون ترجمه کردند، درک کردند که این «شیء» در واقع مجهوله و به جای این که Object (یا چیزی معادلش) ترجمه‌ش کنند، برای حفظ حالت مجهولش از عبارت xei استفاده کردند که بعدا شد xای که در معادلات مختلف استفاده می‌کنیم.

یکی از دلایل این اسم، اینه که هم تلفظش برای داخلی‌ها راحته هم خارجی‌ها و هم یک بکگراند جالب ایرانی داره.

اما حالا مدل‌ها چی هستند؟ چرا انقدر این خونواده از مدل‌ها مهم بود؟

اهمیت خانواده مدل Xei

یکی از دلایل اصلی ساخته شدن Xei این بود که این مدل‌ها بتونن هم روی دستگاه‌های کاربر نهایی مثل من و شما اجرا شن هم روی زیرساخت‌های بزرگ و صنعتی.

در واقع هم تعدادی مدل On Device داشته باشیم و هم تعداد زیادی مدل برای استفاده Enterprise و به همین خاطر ۷ تا مدل در این خونواده، قرار گرفته که در ادامه بررسی می‌کنیم.

مدل‌های Xei

  • مدل ۰.۱ میلیارد پارامتری، مبتنی بر لاماست و صرفا زبان انگلیسی می‌فهمه و می‌تونه در کارهایی مثل کدنویسی به شما کمک کنه.
  • مدل ۰.۵ میلیارد پارامتری، مبتنی بر Qwen ساخته شده. با این که از دیتای چندزبانی درش استفاده شده ولی بهترین عملکرد رو روی انگلیسی داره و همچنان برای کارهایی مثل کدنویسی و نوشتن ایمیل، مناسبه.
  • مدل ۲ میلیارد پارامتری که مبتنی بر Gemma 2 ساخته شده و محمد شجاعی عزیز زحمت ساختش رو کشیده، اولین مدلیه که به خوبی فارسی رو درک می‌کنه و می‌تونه به زبان فارسی به شما پاسخ‌های درست بده.
  • مدل ۸ میلیارد پارامتری که در واقع همون هرمز قدیمی خودمونه و مبتنی بر Command-R از Cohere ساخته شده.
  • مدل ۳۲ میلیارد پارامتری که باز هم مبتنی بر Command-R ساخته شده و نتایج بهتر و دقیق‌تری می‌تونه تولید کنه.
  • مدل ۱۰۰ میلیارد پارامتری که باز هم مبتنی بر Command-R ساخته شده 😁
  • و در نهایت مدل ۶۷۱ میلیارد پارامتری که مبتنی بر DeepSeek V3 ساخته شده و از معماری MoE بهره می‌بره.

و خب همونطوری که می‌بینید، تا مدل ۸ میلیارد پارامتری به سادگی روی اکثر رایانه‌های شخصی حتی بدون کارت گرافیک NVIDIA قابل اجراست ولی نمونه ۳۲ و ۱۰۰ و ۶۷۱ نیاز به منابع بیشتری دارند که در ادامه به اون‌ها هم می‌پردازیم.

چطوری به Xei دسترسی پیدا کنیم؟

اگر می‌خواهید مستقیما به سمت مدل ۶۷۱ میلیارد پارامتری بریم، کافیه که به این سرویس برید، یک حساب کاربری بسازید و شروع به چت کنید.

ولی اگر دوست دارید که این مدل رو روی سیستم شخصی خودتون اجرا کنید، می‌تونید از کتابخونه Ollama نسخه مناسب رو دانلود کنید (با کارت ۲۰۵۰ تا مدل ۳۲ میلیاردی قابل اجراست، گرچه بهترین نتیجه مربوط به همون ۸ میلیاردیه).

در آموزش‌های بعدی، نحوه راه‌اندازی و کار کردن با Ollama رو هم قرار خواهم داد که ببینید چطور میشه به سادگی یک سری مدل خوب هوش مصنوعی رو روی کامپیوتر شخصی، اجرا کرد.

جمع‌بندی و سخن آخر

در حال حاضر، پروژه Xei بعنوان یکی از پرچم‌داران مجموعه مانی که تحت برند Aqua Regia فعالیت می‌کنه قراره مدتها آخرین و مهم‌ترین پروژه ما باشه. از همین رو، پست بلاگ مربوط بهش هم زود نوشته شد تا این که بتونیم روی اون مانور لازم رو بدیم.

اما کل داستان این نیست و به زودی با سورپرایزهای جدید‌تری، در خدمت شما خواهیم بود. امیدوارم تا اون موقع با Xei کارهای خفنی کرده باشید 😎

Share

برای ساخت agent های هوش مصنوعی، فقط به پایتون نیاز دارید!

پاییز دو سال پیش بود که ChatGPT آمد و به شکل خاصی بازار همه چیز رو عوض کرد یا بهتره بگم که به هم ریخت 😁 در این مدت نه فقط OpenAI که هزاران شرکت دیگر هم دست به کار شدند و شروع کردند به ارائه مدل‌های زبانی بزرگ یا همون LLMها و خواستند که به شکلی با OpenAI رقابت کنند.

الان که دو سالی از اون روزها گذشته منتها موضوع کمی تفاوت داره و بیش از این که سمت ارائه مدل بریم، بهتره به سمت agent یا «عامل» بریم که خب خودش یک بحث مفصله.

دیشب، در بلاگ انگلیسیم کمی در مورد مدل‌های بزرگ و ایجنت‌ها صحبت کردم و امروز تصمیم گرفتم که بلاگ فارسیش رو هم بنویسم که هر دو طرف، محتوای مناسب رو داشته باشیم.

ایجنت‌ها، عملگرایی به LLMها اضافه می‌کنند.

اگر دنبال‌کننده بلاگ و در کل محتوای من باشید، احتمالا می‌دونید که من هم در بازی LLM بودم و مثلا یکی از LLMهای اوپن سورسی که روش کار کردم مدل مارال هفت میلیارد پارامتری بود که روی Alpaca Persian تمرین داده شد.

اما آیا یک مدلی که سوال-جواب کنه کافیه یا به چیزی بیشتر نیاز داریم؟ در واقع برای این که LLMها بتونن موثر واقع بشن، باید بتونن با ابزارهای مختلف تعامل کنند. حالا شما فرض کنید که بخواهیم این تعامل رو در سطح فاین‌تیون کردن، به مدل اضافه کنیم.

یعنی فرض کنید که ما APIهایی از دیجی‌کالا، اسنپ، دیوار و مثلا ابر آروان بگیریم. سعی کنیم با کمک تعدادی API Call نمونه، مدل رو تیون کنیم. حالا فرض کنید یک نفر بخواد این مدل رو برای استفاده از تپسی یا باسلام به کار بگیره. چی میشه؟ هیچی! مجددا بار فاین‌تیون با APIهای جدید میفته روی دوش کاربر.

برای حل این مشکل، ما نیاز به agentها داریم. در واقع در مثال‌های فوق هر API و ابزاری که لازم داریم رو برمیداریم، می‌بریم یک جایی براشون توابع درستی می‌نویسیم و سپس با کمک LLMها خروجی رو «انسانی» یا Humanize می‌کنیم. به این شکل بار فاین‌تیون کردن LLMهم به دوش نمی‌کشیم و همه چیز هم عالی پیش خواهد رفت.

ساخت ایجنت بدون استفاده از فریمورک

دقیقا از زمانی که OpenAI و سایر شرکت‌هایی که LLM ارائه دادند APIهای چت و یا Instruction Following خودشون رو هم ارائه کردند، فریمورک‌های زیادی مثل Flowise یا Crew AI ساخته شدند که به شما کمک کنند تا ایجنت بسازید.

اما راستش رو بخواهید – همونطور که در بلاگ انگلیسی هم توضیح داده بودم – خیلی از این فریمورک‌ها یه حجم عجیب و غریبی از پیچیدگی رو به فرایند ساخت ایجنت دارند اضافه می‌کنند.

نتیجه این شد که شخصا به دنبال روشی گشتم که بتونم بدون استفاده از فریمورک خاصی، به راحتی بتونیم یک ایجنت بسازیم. برای همین لازم بود که درک کنم ایجنت اصلا چی کار می‌کنه؟ چرا انقدر مهمه که ما بتونیم ایجنت رو درک کنیم؟ و صدالبته از هر ایجنتی که اسمش «اسمیت» باشه دوری بجوییم 😂

ایجنت‌ها یک سری «وظیفه» و «ورودی مناسب هر وظیفه» رو درک می‌کنند. این وظایف یا تسک‌ها در واقع توابعی هستند که در برنامه‌مون قرار ادادیم که بتونن یک کاری رو انجام بدن (مثلا بره رخداد n ام سری فیبوناچی رو حساب کنه) و ورودی‌هاشون هم دیتاییه که ایجنت باید با هوش خودش تشخیص بده و بسازه.

در نهایت نیاز به مکانیزمی داریم که بیاد این وظایف و ورودی‌ها رو اجرا کنه، خروجیشون رو دوباره بده به LLM و ازش بخواد که Humanizeش کنه. گذشته از این بد نیست که ایجنت ما یک حافظه کوچکی هم داشته باشه.

نمونه یک ایجنت ساده با پایتون

سلب ادعا: از اونجایی که کد این ایجنت رو در گیتهاب گذاشتم، صرفا مراحل ساخت ایجنت ساده رو توضیح میدم و باقیش رو میتونید از گیتهابم ببینید و ایده بگیرید.

اولین گام ما برای ساخت ایجنت باید این باشه که یک LLM مناسب انتخاب کنیم. شما مختارید هر LLMای که یک OpenAI Compatible API ارائه می‌ده انتخاب کنید اما من شخصا دارم از پروژه جبیر خودم استفاده می‌کنم 😁

بعد از اون، لازم داریم که بیاییم یک کلاینت ساده OpenAI درست کنیم که بتونه با API مورد نظر ما کار کنه:

from openai import OpenAI

client = OpenAI(api_key="FAKE", base_url="https://openai.jabirpoject.org/v1")

همونطور که قبلا در این پست توضیح داده بودم، کتابخونه OpenAI در پایتون نیازمند یک API Keyئه که اینجا ما از FAKE استفاده کردیم براش.

حالا یک کلاس ایجنت ساده درست می‌کنیم که حافظه هم داشته باشه:

class Agent:
    
    def __init__(self, system=""):
        self.system = system
        self.messages = []
        if self.system:
            self.messages.append({"role" : "system", "content" : system})
    
    def __call__(self, message):
        self.messages.append({"role" : "user", "content" : message})
        result = self.execute()
        self.messages.append({"role" : "assistant", "content" : result})
        return result
    
    def execute(self):
        completion = client.chat.completions.create(
            model = "jabir-400b",
            messages = self.messages,
            temperature = 0.0
        )
        
        return completion.choices[0].message.content

همونطوری که می‌بینید، این ایجنت می‌تونه یک تاریخچه از چیزهایی که بهش گفتیم (و بهمون گفته) نگه داره و کم کم باید بریم سراغ این که بهش اکشن‌های مورد نظر رو اضافه کنیم.

ولی خب بهتره قبل از اضافه کردن اکشن، تستش کنیم. برای تستش هم این کد رو می‌تونید اجرا کنید:

sample_agent = Agent("You are a helpful assistant")
print(sample_agent("What is 1+1?"))

کد نمونه با اکشن

اگر دوست دارید بدونید که این ایجنت ما با اکشن چطوری کار می‌کنه، می‌تونید به این مخزن گیتهاب مراجعه کنید و ببینید که چطور به راحتی میشه یک اکشن به همین ایجنت ساده اضافه کرد و بار فریمورک‌ها رو هم به دوش نکشید.

جمع‌بندی

اگر طی دو سه سال گذشته محتوای این بلاگ رو خونده باشید می‌بینید که علاقه من به هوش مصنوعی از پروژه‌هایی مثل ریاضی ۱ رو با هوش مصنوعی پاس کن یا پلاک‌خوان فارسی که با Yolo v5 پیاده کرده بودم جدی شد.

این علاقه، کم کم به سمت Generative AI رفت و خب طبیعتا همین علاقه باعث ساخته‌شدن پلتفرم مانی و همچنین آتلیه شد. اما خب در سال ۲۰۲۵ احتمالا بیش از این که به مدل‌های جدید نیاز داشته باشیم، نیاز داریم که مدل‌ها رو به سمت agentic شدن بیاریم و اپلیکیشن‌ها رو به شکل AI agent داشته باشیم.

Share

معرفی سرویس آتلیه

در زمستان ۱۴۰۱ سرویس مانی، به صورت یک پروژه شخصی و با الهام‌گیری از میدجرنی، ساخته  و سپس در فروردین ۱۴۰۲ به صورت عمومی و به صورت پلتفرم ارائه عمومی شد.

از همان روزهای اولی که مانی عرضه شد بسیاری از دوستان به دنبال سرویس «تصویر به تصویر» یا Image to Image بودند که بتوانند از تصاویر شخصی خود، عزیزان یا حتی محصولاتشان تصاویر شخصی‌سازی‌شده ایجاد کنند.

اما یک مساله مهم که وجود داشت این بود که عموم تکنیک‌های تصویر به تصویر صرفا از تصویر ورودی «الهام‌گیری» کرده و سپس به شما این اجازه را می‌دهند که تصویر نهایی «تا حدی شبیه به تصویر ورودی» دریافت کنید. برای این منظور، در نظر گرفته بودم تا ابزار بهتری توسعه دهم.

مشکلی که وجود داشت

مشکلی که وجود داشت، این بود که عموم ابزارها، حتی ابزارهای متن‌باز که با Stable Diffusion همخوانی داشتند صرفا Face Swapping انجام می‌دادند. در واقع این ابزارها، تصویری از شما را می‌گرفتند و گاهی آن را «به زور» در تصویر تولیدشده جای می‌دادند.

در همین حین، ایده‌ای برای من مطرح شد. چه می‌شد اگر می‌توانستیم تصاویر ورودی کاربر را بخشی از هوش مصنوعی خود کنیم؟ این شد که طرح اولیه یا به قولی Flow چیده شد.

پاسخ به مشکل

پاسخی که برای این مشکل در نظر گرفتم بسیار ساده بود. در نظر گرفتم که چه می‌شود اگر بتوانیم از کاربر تعدادی تصویر دریافت کنیم، این تصاویر را به خورد یک مدل بدهیم و به عبارتی یک Adapter برای مدل مورد نظر درست کنیم.

مدتی هم بود که در حال تحقیق و توسعه روشی بر روی مدل FLUX Dev از شرکت Black Forest Labs بودم که بتوانیم در مدت‌زمان کوتاهی، یک LoRA یا Low Rank Adapter برای مدل مذکور بسازیم. این فرصت را مغتنم شمردم و پروتوتایپی از چیزی که در نظر داشتم را با کمک زیرساخت شرکت modal ساختم.

پس از آن، کد نوشته‌شده برای بهبود فرایند ساخت LoRA را مرحله به مرحله بهبود دادم و سپس با کمک وبسایت Fal AI اقدام به بهبود فرایند تولید تصویر کردم.

در نهایت، تمامی این فرایند باعث شد تا استارتاپی با نام آتلیه به وجود آید. جایی که کاربران، بتوانند متفاوت دیده شده و رویایشان را زندگی کنند.

آتلیه چیست و چه می‌کند؟

آتلیه، یک پلتفرم هوش مصنوعی است که به شما کمک می‌کند تا تنها با ارائه یک فایل zip حاوی ۵ الی ۱۰ عکس از خودتان، عزیزانتان یا حتی محصولاتی که تولید می‌کنید یا می‌فروشید؛ تصاویر خلاقانه تولید کنید.

در واقع آنچه در مانی ارائه می‌شد، صرفا ارائه یک پلتفرم برای تولید تصویر از متون ورودی (مشابه میدجرنی یا Dall-E) بود اما آتلیه، مدل‌های هوش مصنوعی اختصاصی را با هزینه اقتصادی برای شما تولید می‌کند و می‌توانید از خروجی آن به مقاصد مختلف، استفاده کنید.

چگونه از آتلیه استفاده کنیم؟

برای استفاده از آتلیه، می‌توانید ابتدا در وبسایت آتلیه عضو شوید. برای عضویت کافیست یک ایمیل و یک پسورد وارد کنید و نیازی به تایید ایمیل نیست.

پس از عضویت، با مطالعه راهنمای ساخت مدل، کافیست یک مدل هوش مصنوعی دلخواه ایجاد کنید. لازم به ذکر است که اگر از تاریخ ۳۰ آذر الی ۱۴ دی ۱۴۰۳ به عضویت وبسایت درآیید، یک مدل و ده تصویر رایگان هدیه‌ای از طرف ما به شماست.

پس از این که مدل مورد نظر ساخته شود، شما قادر خواهید بود که تصاویر مد نظر خود را ایجاد کنید. برای ایجاد تصویر نیز کافیست تا راهنمای ایجاد تصاویر را مطالعه کنید.

بازخوردها، نظرات و پیشنهادات شما

چنانچه از آتلیه استفاده کردید و بازخورد، نظر و پیشنهادی در رابطه با سرویس دارید، همیشه از طریق فرم تماس وبسایت آتلیه قادر خواهید بود تا با ما تماس بگیرید و نظرات، پیشنهادات، بازخوردها و انتقادات خود را مطرح نمایید.

موفق و موید باشید.

Share

مارال‌چت آمد، ربات تلگرامی با مدل مارال هفتاد میلیارد پارامتری

زمستان پارسال، نخستین نسخه آلفای مدل بزرگ زبانی مارال را معرفی کردیم. یک مدل ۷ میلیارد پارامتری مبتنی بر Mistral که روی دیتای فارسی، تنظیم شده و در دسترس شماست. مارال در نسخه‌های اولیه، به شدت ضعیف عمل می‌کرد و خب البته در نسخه‌های اولیه، این موضوع اصلا چیز عجیبی نیست.

اما بعد از چندماه و با عرضه LLaMa 3 در نسخه‌های ۸ و ۷۰ میلیارد پارامتری توسط شرکت متا (فیسبوک سابق)، اوضاع کمی متفاوت شد. این مدل در پایه خودش، درک خوبی از زبان فارسی داره و Fine Tune کردنش روی زبان فارسی، کمی راحتتر شده. گذشته از این، درک بهتری از معنای متون هم داره و در خیلی از وظایف مثل کدنویسی، تولید متن و … به خوبی می‌تونه کمک کنه.

مارال‌چت

نسخه جدید مارال، که روی داده‌های «دنبال کردن دستورالعمل» یا Instruction following آموزش دیده، اسمش «مارال‌چت» بوده و اصولا یک نمونه مشابه ChatGPT به حساب میاد. از اونجایی که در حال حاضر در فاز MVP و Proof of Concept به سر می‌بره، بستر مورد نظر تلگرام انتخاب شد. این ربات در حال حاضر در تلگرام در دسترس شماست.

مارال‌چت، در دو نسخه ساخته شده یکی ۸ میلیاردی و دیگری ۷۰ میلیاردی که در حال حاضر، تصمیم و ترجیح بر آن بوده که مدل مدتی آزمایش بشه و پس از آزمایش، وزن‌های مدل‌ها در اختیار دوستانی که مایل به self hosting مدل هستند، قرار بگیره. به همین دلیل این مدل تا اطلاع ثانوی اوپن سورس نخواهد شد. اخبار انتشار سورس و وزن مدل هم در همین وبلاگ به زودی منتشر میشه.

دسترسی به ربات در تلگرام

برای این که به مارال‌چت دسترسی داشته باشید، فقط کافیه که از این لینک بهش مراجعه کنید. بعد از start زدن، مثل سایر ربات‌ها می‌تونید به سادگی ازش استفاده کنید.

امکانات ربات

ربات در حال حاضر دو قسم امکانات ارائه می‌ده، اول بپردازیم به امکانات پریمیوم یا پولی ربات که شامل اتصال به اینترنت و همچنین ویژن (پردازش تصویر) میشه.

اما امکانات رایگان ربات که در حال حاضر قادر به استفاده ازش هستید شامل این موارد میشه:

  • چت متنی: مانند ChatGPT و Poe و Gemini و … می‌تونید برای ربات پیام متنی ارسال کنید و پاسخ متنی هم دریافت کنید.
  • چت صوتی: اگر به ربات Voice Message ارسال کنید، ربات هم به شما پیام صوتی ارسال می‌کنه و پاسختون رو میده.
  • ساخت تصویر: ربات مارال به کمک پلتفرم هوش مصنوعی مانی، قادر به ساخت تصاویر با کمک هوش مصنوعی هم هست.

پیگیری اخبار مارال‌چت

به جهت پیگیری اخبار و اطلاع‌رسانی‌های مارال‌چت، می‌تونید به کانال اطلاع‌رسانی مارال‌چت در تلگرام بپیوندید. همچنین می‌تونید در گروه بازخوردها هم عضو بشید و بازخوردتون رو نسبت به نحوه پاسخ‌دهی و کیفیت پاسخ‌ها، اعلام کنید.

پروژه‌های بعدی

پروژه‌هایی مثل مانی، موسیقا (لینک پست بلاگ در موردش اینجاست) و مارال‌چت، پروژه‌هایی بودند که بدون تامین زیرساخت توسط اسپانسرهایی چون ایران‌سرور، تولیدشون برای ما غیرممکن بود. پروژه‌های بعدی ما هم عموما قراره در همین فضای هوش مصنوعی زایا و … باشند و خب اخبار خوبی رو در این تابستان، برای شما خواهیم داشت.

سخن آخر

در آخر، باید گفت چندسالی میشه که فضای هوش مصنوعی رو دارم رصد می‌کنم و هربار می‌بینم که چقدر پتانسیل هست و چقدر میشه در صنایع و موضوعات مختلف، کارهای هیجان‌انگیز و به قولی خفن کرد! و خب این موضوع هم به نوبه خود، می‌تونه کار کردن در این حوزه رو جذاب‌تر کنه.

از طرفی، مشخصا هنوز خیلی‌ها use case درستی برای AI در صنایع و مشاغل و صنف خودشون پیدا نکردند و این خودش می‌تونه تا حد زیادی، مشکل‌ساز بشه. اما خب لازم به ذکره که این use caseها معمولا وقتی به بار می‌شینن که ابزارهایی مانند مارال‌چت یا مانی ساخته بشند و افراد بتونن استفاده‌ای در صنعت خودشون برای این موضوعات پیدا کنند. امیدوارم که از مارال‌چت و امکاناتش استفاده کنید و برای شما، مفید واقع بشه 🙂

موفق باشید.

Share

با موسیقا، رویای خود را بنوازید!

در سال گذشته، پلتفرم هوش مصنوعی مانی را معرفی کردم که معادل یا بعبارت بهتر، رقیبی برای میدجرنی به حساب می‌آمد. اما امسال، با یک غافلگیری تازه طرف هستیم.

موسیقا، پلتفرمی مبتنی بر تکنولوژی هوش مصنوعی زایا یا Generative AI است که به شما کمک می‌کند تا آنچه در ذهن دارید را با چند کلیک، به موسیقی آن هم در ژانرهای مختلف مانند امبینت، الکترونیک، پاپ و … تبدیل کنید.

نحوه استفاده از موسیقا

برای استفاده از موسیقا، ابتدا به وبسایت موسیقا به آدرس musiqa.ir بروید، سپس، منتظر بمانید تا مدل روی سیستم شما لود شود (بهتر است با رایانه شخصی خود به این وبسایت مراجعه کنید چرا که ممکن است گوشی‌های همراه شما سخت‌افزار لازم برای اجرای این مدل را نداشته باشند).

مدل حدود ۶۵۵ مگابایت حجم داشته و دانلود آن بسته به نوع اتصال اینترنتی شما، می‌تواند مدت زمان زیادی را صرف کند، اما این دانلود فقط یک بار انجام می‌شود و پس از آن نیازی به دانلود مجدد مدل نخواهیم داشت.

پس از دانلود مدل، یکی از پرامپت‌ها (داخل کادرهای زردرنگ) را انتخاب کرده و یا پرامپت مورد نظر خود را نوشته، سپس دکمه Let’s Party را بفشارید.

بسته به سخت‌افزار خود، صبر کنید تا موسیقی مورد نظرتان تولید شود!

نمونه موسیقی تولید‌شده با موسیقا

حامیان پروژه

شرکت محترم ایران‌سرور، از نیمه دوم سال ۱۴۰۲ هجری خورشیدی، با تامین زیرساخت برای پروژه‌های مانی، وکنتور و موسیقا به نخستین و بزرگترین حامی این استارتاپ تبدیل شده است.

همچنین، مفتخریم اعلام کنیم که برای تامین زیرساخت پروژه‌های دانشجویی شما نیز، آماده ارائه سرویس‌های نوت‌بوک با GPU با همکاری ایران‌سرور هستیم.

Share

مارال اینجاست، مدل ۷ میلیارد پارامتری با پشتیبانی از زبان فارسی

در دنیایی که AI و بخصوص از نوع Generative به شدت در اون مهم شده، یکی از مسائل بزرگی که باهاش روبرو هستیم، چیرگی زبان انگلیسی بر جویه که ساخته شده.

من در مطلب پیشینم، در مورد چیرگی زبان انگلیسی بر دنیای هوش مصنوعی نوشته بودم که می‌تونید بخونید و ببینید که چه مشکلاتی وجود دارند که داریم باهاشون دست و پنجه نرم می‌کنیم.

اما خب، الان قضیه کمی متفاوت شده و ما در این مطلب قراره «مارال» رو بررسی کنیم، هم این که ایده‌ش از کجا آمد و هم این که چیه و چه فرق‌هایی با تلاش‌های پیشین داره و هم این که در کل مزیتش چیه.

مارال هفت میلیارد پارامتری و مزایای آن

در تابستان امسال یا دقیق‌تر بگم روز ۱۵ تیر ۱۴۰۲، من رویدادی با نام Summertime AI برگزار کردم. رویداد برای معرفی چندین ابزار هوش مصنوعی بود و من اشاره‌ای به ابزاری به اسم «مارال» کردم.

مارال در اون زمان، قرار بود یک GPT2 تیون شده روی زبان فارسی باشه، اما خب بعد از کمی تحقیق و تفحص در مورد این مدل، فهمیدم که خیلی پیش‌تر از ما، افرادی بودند که این مدل رو با زبان فارسی تیون کنند.

حقیقتا GPT2 هرقدر هم ساختار خوبی داشت، ظاهرا مدل مناسبی برای این موضوع نبود!

اما راه‌حل رو کمی بعدتر، پیدا کردیم. در ادامه، قراره در مورد این راه‌حل صحبت کنیم و ببینیم که مارال چیه و چه مزایایی داره و برای توسعه بهترش، باید چه کارهایی کنیم.

مارال چیه؟

مارال، یک مدل بزرگ زبانی یا LLM بر مبنای مدل Mistral 7B (لینک) و تیو‌ن‌شده برای زبان فارسیه. این مدل، به صورت «پیروی از دستورالعمل» یا Instruction Following کار می‌کنه و نتایجی که تولید می‌کنه هم تقریبا هم‌ارز GPT-3.5 هستند.

مارال در حال حاضر در نسخه ۷ میلیارد پارامتری عرضه میشه، همچنین به صورت یک adapter برای Mistral هم قابل استفاده‌ست که اگر شما پیش‌تر مدل میسترال رو جایی داشته باشید، صرفا با استفاده از آداپتور مارال، بتونید ازش استفاده کنید.

همچنین مدل و جزییاتش در این لینک موجودند.

مزایای مارال نسبت به مدل‌های فارسی قبلی چیه؟

برای درک این موضوع، باید تا حد زیادی عقب بریم. ببینیم اصلا از کِی، بحث پردازش زبان طبیعی یا NLP فارسی، خیلی داغ شد. راستش رو بخواهید از زمانی که شخصا به یاد دارم، بحث پردازش و نمایش زبان فارسی، بحث داغی بود.

حتی میشه گفت چالش‌های بسیار زیادی هم در این حوزه وجود داشت. کم‌کم با پیشرفت اینترنت، این موضوع هم بهبود پیدا کرد. ناگفته نماند که البته حتی حضور فونت‌های آزاد فارسی مانند وزیرمتن (جا داره اینجا هم یادی کنیم از صابر راستی‌کردار عزیز) هم تاثیر بسزایی در این امر گذاشتند.

اما بحث Text Generation چطور؟ این بحث به صورت خاص در همون سال‌های ۲۰۱۶ تا ۲۰۱۸ که در دنیا مدل‌های LSTM و GPT-2 خیلی مطرح بودند، پا گرفت. بسیاری از اشخاص و شرکت‌های ایرانی، به سمت تولید مدل رفتند. در ادامه، دوتا از این مدل‌ها که «اختصاصا» برای زبان فارسی ساخته شدند رو بررسی و مشکلاتشون هم مطرح می‌کنم.

مدل‌های تجاری

در حال حاضر، تنها مدلی که به صورت تجاری در دسترسه، مدل وبسایت «خودنویس»ئه که خب، این مدل علیرغم این که خروجی‌های بسیار خوبی می‌تونه تولید کنه، تجاریه و نمیشه خیلی بررسی دقیقی روش داشت.

علاوه بر اون، خروجی‌هایی که تولید می‌کنه من رو یاد خروجی مدل‌هایی مانند GPT NeoX 20B و GPT J 6B میندازه و خب با توجه به قدمت این وبسایت، این موضوع کاملا طبیعیه.

یکی از مشکلاتی که مدل‌هایی مثل GPT J دارند، اینه که علاقه خاصی به تکرار خودشون دارند، البته این مشکل تا حدی هم به Tokenizer های مدل‌ها برمی‌گرده که برای زبان فارسی، مناسب‌سازی نشدند.

مدل‌های آزاد

اما در حین جستجو، تونستم دو مدل آزادی که اختصاصا برای فارسی ترین شدند رو پیدا کنم که در ادامه در موردشون کمی توضیح خواهم داد.

  • مدل ParsGPT: این مدل، دقیقا GPT2 اون هم نسخه ۱۴۲ میلیون پارامتری بود که روی دیتای فارسی ترین شده، گرچه دقت نسبتا خوبی در تولید محتوای فارسی داره، اما دو تا مشکل بزرگ داشت. اول، این که طبق معمول عادت به تکرار خودش داره (این مساله رو در ادامه در موردش صحبت خواهم کرد) و دوم این که از یه جایی به بعد، دقیقا مطالب بی‌ربط به پرامپتی که داده شده تولید می‌کنه. مثلا ممکنه از یه مطلبی پیرامون هوش مصنوعی، برای شما متن یک خبر مرتبط با وزارت خارجه بورکینافاسو تولید کنه!
  • مدل GPT2 Medium Persian: این مدل باز کمی بهتر بود. مدل بزرگ‌تر و با حدود ۳۰۰ میلیون پارامتر. اما مشکل به طور واضح، دیتایی بود که مدل باهاش pretrain شده. به قول معروف روی «آشغال‌های سئوشده وب فارسی» ترین شده و احتمال این که مطالب خلاف واقع تولید کنه بسیار بالاست. گذشته از این، هنوز مشکل تولید محتوای بی‌ربط هم در این یکی مدل به چشم میخورد.

پس راه‌حل این بود که یک مدل جدیدتر با پایه جدیدتر ساخته بشه. خوشبختانه دوستی به نام سینا رشیدی، دادگان آلپاکای فارسی رو ایجاد کرده که ازش برای ترین کردن این مدل، استفاده کردیم.

و اگر بخواهیم مزایای مارال رو نسبت به مدل‌های پیشین بگیم:

  • دیتاست بهتر
  • پارامترهای بیشتر
  • مدل پایه جدیدتر
  • خروجی‌های بهتر

خواهند بود.

مزایای مارال نسبت به مدل پایه‌ش (Mistral 7B) چیه؟

اولین روزی که از میسترال استفاده کردم متوجه شدم نسبت به مدل‌های قبلی مثل LLaMa, LLaMa2, StableLM 7B و Vicuna و امثالهم، درک بهتری از الفبای فارسی/عربی داره.

این نشان از این بود که این مدل، قابلیت فهمیدن فارسی داره ولی به قدر کافی مطلب فارسی ندیده. به همین خاطر دست به فاین‌تیون کردنش روی دیتاست فارسی زدم.

مزیت این مدل نسبت به میسترال، اینه که فارسی رو از لحاظ ساختار و معنا درست‌تر می‌فهمه و می‌تونه خروجی بسیار بهتری در زبان فارسی تولید کنه. نکته جالب اینه که زبان انگلیسی هم همچنان می‌فهمه، پس یک مدل Bilingual داریم که می‌تونیم در آینده، ازش استفاده‌های باحالی کنیم.

بذارید خیلی خلاصه بگم، مارال، تمام خوبی‌های میسترال رو داره بعلاوه درک خوبی از زبان شیرین فارسی. البته ناگفته نماند که در بخش بعدی مشکلاتی که در نسخه آلفا داشتیم رو هم لیست کردم و براتون نوشتم 🙂

در حال حاضر چه مشکلاتی ممکنه در استفاده از مارال پیش بیاد؟

  • مدل در هذیان‌گویی (Hallucination) بسیار خوبه. البته، این مشکل تقریبا تمام مدل‌های زبانیه و با گذر زمان، میشه حلش کرد.
  • مدل علاقه زیادی به تکرار خودش داره 😁
  • نتایج مدل در حال حاضر خیلی factual نیستند و می‌تونه misinformation تولید کنه.
  • مدل خیلی بزرگه و با همه سخت‌افزارها قابل اجرا نیست (البته با کد ۸ بیتی که ارائه کردیم قابل اجرا میشه)
  • فرمت پرامپتش، کمی مناسب نیست و نیازه که شروع و پایان جملات به مدل آموزش داده شه.

چه چیزی برای توسعه بهتر مارال لازمه؟

  • دیتاست بهتر (نه الزاما بزرگتر) و حتی شاید دیتاست‌های تخصصی
  • ترین شدن tokenizer روی زبان فارسی

چطور از مارال استفاده کنم؟

چنانچه قصد دارید از مارال استفاده کنید، کدهای اجرای مارال روی GPU رو در این لینک قرار دادیم. می‌تونید این کدها رو روی سیستم خودتون یا در Google Colab اجرا کنید.

جمع‌بندی

پس از این که یک ترین موفق روی Stable Diffusion و ساخت مدل «مانی» که البته در این مطلب در موردش توضیح داده بودم، باعث شد که پلتفرم هوش مصنوعی مانی رو راه‌اندازی کنم و به نوعی یک AI company تشکیل بدم، مسیرم به شکلی تغییر کرد که پشتیبانی بهتر و بهتر از زبان شیرین فارسی رو بتونم به این مدل‌ها اضافه کنم.

در حال حاضر، کاربردهای زیادی برای مدل بزرگ زبانی فارسی مانند مارال میشه متصور شد. گذشته از ربات‌های پشتیبان (که با متد RAG ساخته میشن) میشه به کاربردهای بسیار بیشتری هم برای این مدل فکر کرد. دوست دارم بدونم شما چه فکری در مورد این مدل دارید؟

در پایان هم ممنونم از وقتی که گذاشتید و این مطلب رو خوندید. امیدوارم این مطلب، برای شما مفید بوده باشه. موفق و موید باشید 🙂

Share

چیرگی زبان انگلیسی بر دنیای هوش مصنوعی، نگران‌کننده است.

مدت بسیار بسیار زیادی بود که اینجا مطلبی نمی‌نوشتم چون حقیقتا درگیر توسعه پلتفرم هوش مصنوعی مانی بودم (قبلتر هم اینجا در موردش نوشته بودم). و خب همین باعث شد که مدتی نسبتا طولانی، از دنیای بلاگ و بلاگ‌نویسی دور باشم. اما خب همیشه هم در روی یک پاشنه نمی‌چرخه و گاهی هم لازمه دست به قلم شد. به همین خاطر آمدم اینجا مجددا تا در مورد چیرگی زبان انگلیسی در دنیای هوش مصنوعی و این که چرا باید نگران این موضوع باشیم بنویسم.

خواهشی که از خوانندگان این بلاگ دارم اینه که این پست رو از دید یک شخص دغدغه‌مند زبان فارسی بخونید و نه از دید یک مهندس کامپیوتر. چرا که بیشتر دغدغه‌ها، از جنس دغدغه زبانی و فرهنگیه. حتی اگر زبان اول و مادری شما فارسی نیست، ازتون می‌خوام که این متن رو دقیقا با این دید بخونید که جای زبان شما هم در دنیای هوش مصنوعی، خالیه. پس بزنید بریم 🙂

هوش مصنوعی در خدمت انگلیسی‌زبان‌ها

در سال‌های اخیر، با ارائه مدل‌های زبانی که در تولید متن (Text Generation) و طبقه‌بندی متن (Text Classification) و خلاصه‌سازی متن (Text Summerization) می‌تونن به ما کمک کنند یک ویژگی کاملا مشهوده. این مدل‌ها عموما عمده داده‌ای که دیدن، به زبان انگلیسی بوده. مگر این که مدل، از مدل‌های بسیار بزرگ (مثل GPT-3 یا BLOOM) بوده باشه که باز هم چیزی در حدود ۹۶-۹۷ درصد این داده ورودی، انگلیسی بوده.

خب شاید تا اینجا بشه تا حد خوبی قبول کرد که محتوای خوب در دسترس برای این مدل‌ها – که عمدتا از وب کراول شدند – به زبان‌هاییه که تعداد گویشورانشون زیاده. مثل انگلیسی، مندرین (چینی)، عربی یا اسپانیایی. تا اینجا میشه قبول کرد. حتی این که اکثر این مدل‌ها، توسط شرکت‌های امریکایی توسعه داده شدن و زبان اون کشور هم انگلیسیه، نکته قابل قبولی می‌تونه باشه. اما مشکل اصلی ما کجاست؟ مشکل اینجاست که عمده این مدل‌ها حتی الان داره در کسب و کارهای ایرانی استفاده میشه و نهایت کاری که شده، استفاده از یک مترجم ماشینی بوده.

نه فقط مدل‌های تولید متن، بلکه مدل‌های تولید تصویر و موسیقی و … هم از این قاعده مستثناء نبودند و حتی نسخه‌هایی که با داده دلخواه آموزش دیدند (دقیقا مثل مانی) فعلا گرفتار به لعنت زبان انگلیسی هستند. در واقع عمده تلاش‌هایی که در جهت هوش مصنوعی صورت گرفته، الزام عجیبی داشته در دانستن و خوب بودن در زبان انگلیسی.

اما خب این تمام ماجرا نیست، حتی بسیاری از انگلیسی‌زبان‌ها هم از این مدل‌ها شکایت دارند. بیایید اون موارد رو در بخش بعدی با هم بررسی کنیم.

مشکلاتی که انگلیسی‌زبان‌ها مطرح کردند

سانسورشدگی در خروجی‌های مدل

مطمئنا در یک سال اخیر، شما هم با ChatGPT عزیز کار کردید. احتمالا هم خیلی وقت‌ها، متوجه شدید که وقتی ازش سوالی می‌کنید، به شما میگه «متاسفانه به عنوان یک مدل زبانی بزرگ قادر نیستم در فعالیت غیرقانونی به شما کمک کنم».

گرچه این مورد به ذات می‌تونه خوب باشه (با توجه به نداشتن محدودیت سنی در استفاده) اما خب من رو شدیدا یاد رمان ۱۹۸۴ میندازه، اونجایی که زبان انگلیسی رو طوری تغییر داده بودن که اگر کسی خلافش صحبت می‌کرد مجرم بود. بخواهیم یا نخواهیم، این ابزارها مثل اینترنت و سایر رسانه‌های اجتماعی در شکل‌گیری و جهت‌گیری افکار ما می‌تونن موثر باشند. به همین خاطر این حد از سانسورشدگی که هم در چت‌جی‌پی‌تی، هم در لاما (مدل بزرگ مِتا) و هم در بارد (مدل بزرگ گوگل) شاهدیم، عاقبت خوبی نداره.

جهت‌دار بودن خروجی‌های مدل‌های زبانی بزرگ

بیایید فرض کنیم که کودکی وجود داره که هر روز به اسم «ناهار» بهش یک غذای خاص داده شده و نتونسته غذایی جز اون رو در وعده «ناهار» تجربه کنه. مثلا هرروز ساعت ۱۲ ظهر به این کودک شما یک عدد ساندویچ هات‌داگ دادید. حالا نتیجه چی میشه؟

کافیه به این کودک لیستی از غذاها نشان بدیم و ازش بخواهیم که برای وعده ناهار امروز یکی رو انتخاب کنه. به نظرتون این کودک چه چیزی رو انتخاب می‌کنه؟

موضوعیتی که در این مساله «بایاس» در هوش مصنوعی داره از همینجا میاد. اگر داده ورودی ما، یک جهت‌گیری خاص داشته باشه، طبیعتا خروجی هم همونقدر می‌تونه جهت‌دار بشه. حتی اگر سانسوری در کار نباشه باز می‌تونه این ابزار، آلت دست جریان‌های تفکری خاص بشه برای کنترل و شکل‌دهی افکار عمومی.

به همین خاطر هم مدل‌های زیادی وجود داره که افراد روی داده کمتر جهت‌دار (مثل داده‌هایی که از بریتانیکا و ویکی‌پدیا میشه به دست آورد) آموزش دادند. حتی مدل‌هایی مثل Pygmalion دقیقا به خاطر همین موضوع جهت‌دار نبودن و سانسور نداشتن، از فضاهایی مثل Google Colab منع شدن!

برای زبان فارسی چه کاری می‌تونیم بکنیم؟

و حالا بحث ما می‌رسه به زبان شیرین فارسی و این که چه کاری از دستمون برای این زبان برمیاد؟ ابتدا باید ببینیم که این مدل‌ها چطوری کار می‌کنن!

یک مدل زبانی بزرگ مثل LLaMa یا GPT-3 یا هر مدل دیگری (که این روزها حسابی سر و صدا کردند) کارکردشون اینطوریه که حجم زیادی از داده شامل متن می‌بینن. این داده می‌تونه مطلب بلاگ، اخبار یا مدخل‌های ویکی‌پدیا باشه. بعد این داده رو که می‌بینن، تلاش می‌کنن ارتباط بین کلمات رو بفهمن. در بعضی موارد قادر به استخراج و تشخیص context هم هستند که اگر کلمات مشابهی رو دریافت کنند، چه پاسخی بدن.

بعد از اون، مبتنی بر ورودی‌ای که ما بهشون می‌دیم (که بهش میگن پرامپت) شروع می‌کنن تولید یک سری رشته متنی. حالا در بعضی موارد این قضیه می‌تونه به این شکل باشه که ما برنامه‌نویسی کنیم تا در قالب پرسش/پاسخ به ما خروجی تحویل بده. در کل این مدل‌ها ساخته میشن که متن تولید کنند، یا بتونن اون رو طبقه‌بندی کنن یا این که حتی خلاصه‌ای از متن رو به ما بدن.

حالا سوال اینه که ما با این دانش، باید چی کار کنیم تا بتونیم زبان فارسی رو به چنین مدل‌هایی وارد کنیم؟

جمع‌آوری/تولید داده

همونطور که قبلتر هم توضیح داده بودم، یکی از سخت‌ترین بخش‌های هر پروژه هوش مصنوعی، جمع‌آوری یا تولید داده مورد نظرمونه (لینک) و خب طبیعیه که وقتی ما می‌خواهیم روی موضوعات خاصی تمرکز داشته باشیم، جمع‌آوری و تولید این داده سخت‌تر هم میشه.

برای جمع‌آوری داده فارسی، ما می‌تونیم از منابع زیادی استفاده کنیم. مثلا بلاگ‌های فارسی، اخبار، ویکی‌پدیا و … . فقط باید توجه داشته باشیم که این داده‌ها همیشه نیازمند تمیزکاری هستند.

راه دیگر، استفاده از روش جمع‌سپاری و درخواست از یک جامعه‌ست برای تولید داده مورد نظر. یعنی مثلا یک پلتفرم ایجاد کنیم و از مردم بخواهیم که مثلا هرکسی یک پاراگراف در مورد یه موضوعی بنویسه. به این شکل در مدت کوتاهی، می‌تونیم به یک حجم خوبی از داده برسیم (مثل کاری که Mozilla Common Voice انجام می‌ده).

خلاصه وقتی مشکل داده حل بشه، تقریبا همه چیز حله. ولی خب یک مساله دیگر هم هست که کمی بهش اشاره می‌کنم و امیدوارم در پست آینده بتونم سورپرایزتون کنم باهاش 😁

مدل‌های پایه

بعد از جمع‌آوری داده‌های مکفی، لازمه ذکر کنم که ما به مدل پایه هم نیاز داریم. مدل‌هایی مثل GPT-3 که امکان بازآموزی ندارند (چون اوپن سورس نیستند) و اگر داشته باشند هم این بازآموزی باید روی بستر OpenAI انجام بشه که طبیعتا خیلی گزینه منطقی و مناسبی نیست. مدل‌هایی مثل BLOOM یا Falcon 40B هم بسیار بزرگتر از این هستند که بتونیم حتی با داشتن حساب کاربری روی Google Colab Pro Plus آموزششون بدیم.

پس چی می‌مونه؟ مدل‌های کوچکتر که دقت خوبی دادند. مدل‌هایی مثل GPT-J, GPT-NeoX, LLaMa, … می‌تونن پرفرمنس خوبی در این زمینه داشته باشند. تلاش‌هایی در این جهت داره میشه و به زودی در موردش در همین بلاگ خواهم نوشت 🤩

سخن آخر

در نهایت، باید بگم یکی از مهم‌ترین عواملی که افراد یک جامعه رو کنار هم نگه می‌داره، زبانشونه. در روزگاران گذشته، حفظ زبان منوط به تاریخ‌نگاری و شعر و … بوده. کمی گذشت، زبان‌ها با نثر و رمان خودشون رو حفظ کردند و بعد از اون وارد عصر رسانه و جراید شدیم.

اما نکته اینه که در دنیای امروز، در سال ۱۴۰۲ خورشیدی، در ۲۰۲۳ میلادی یا هرچی که شما قبول دارید، حفظ زبان‌ها، خواه فارسی خواه عربی، خواه ترکی خواه کردی، مستلزم اینه که ماشین‌ها درک خوبی از اون زبان داشته باشند. به همین خاطر این پست بلاگ نوشته شد تا این نگرانی به گوش سایر افرادی که ممکنه دغدغه مشابه داشته باشند، برسه.

امیدوارم شاد و خندون و موفق باشید 🙂

Share

مصاحبه با محمدرضا حقیری، مهندس هوش مصنوعی – ابزارهای هوش مصنوعی ما را به جهانی هل می‌دهند که مردم در آن هوشمندانه‌تر کار می‌کنند، نه سخت‌تر

متنی که در ادامه می‌خوانید، ترجمه فارسی مصاحبه من با یک شرکت آلمانیه که یک رسانه هم برای انجام مصاحبه و تولید محتوا در مورد مسائل مرتبط با نرم‌افزار، کامپیوتر، هوش مصنوعی و … دارند. مصاحبه به زبان انگلیسی اینجا و مصاحبه به زبان آلمانی اینجا در دسترسند.

مصاحبه با محمدرضا حقیری، مهندس هوش مصنوعی

ما با محمدرضا حقیری، توسعه‌دهنده‌ای از ایران که هم‌اکنون مشغول کار بر روی یک مدل متن به تصویر متن‌باز به نام مانی است، صحبت کردیم.

او دانشش درباره فناوری‌هایی که برای توسعه این مدل استفاده کرده را با ما به اشتراک گذاشته است. هوش مصنوعی چندمدلی او، از Stable Diffusion و Dream Booth استفاده می‌کند.

برای درک بهتر مطلب، مثل همون متن اصلی، سوالات و نظرات اون‌ها رو بولد و پاسخ‌های خودم رو عادی نوشتم.

لطفا خودت رو برای خوانندگان ما معرفی کن. چه کارهایی کردی که به اینجا رسیدی؟ و چطور؟

من محمدرضا حقیری هستم، متولد ۹ خرداد ۱۳۷۵ (۳۰ می ۱۹۹۶) در تهران، ایران. من همیشه علاقه وافری به ساختن چیزهای مختلف داشتم و این علاقه در حوزه علوم کامپیوتر بیشتر و بیشتر شد. در سن ۱۲ سالگی برنامه‌نویسی رو شروع کردم و اولین زبانی که یادگرفتم هم ویژوال‌بیسیک ۶ بود. یادمه اولین برنامه‌ای که نوشتم، ماشین حسابی بود که فشاری که یک جرم به سطح وارد می‌کنه رو محاسبه می‌کرد.

من در دانشگاه مهندسی سخت‌افزار خوندم و بعد از این که در مقطع کارشناسی فارغ‌التحصیل شدم (که همزمان با قرنطینه بود) مطالعه هوش مصنوعی رو جدی‌تر شروع کردم. ایده‌هایی در ذهنم بودند، برنامه‌نویسی بلد بودم ولی قبل اون دوره، هیچوقت به این که مهندس هوش مصنوعی بشم فکر نکرده بودم. انگیزه اصلی برای مطالعه هوش مصنوعی رو یک سریال تلویزیونی به نام مظنون (Person of Interest) به من داد که به نوعی داشت آثار واقعی هوش مصنوعی بر زندگی بشر رو به تصویر می‌کشید.

اواخر ۲۰۲۱ و اوایل ۲۰۲۲ بود که مفهوم «هوش مصنوعی مولد» و «هنر تولیدشده توسط هوش مصنوعی» رو شناختم و همونطوری که می‌تونی حدس بزنی، عاشقش شدم 😁 به همین خاطر هم مطالعاتم جدی‌تر شدند و سعی کردم مدل خودم رو در قالب یک استارتاپ توسعه بدم تا بتونم اون چیزی که در ذهن دارم رو تولید کنم.

در حال حاضر روی مدل متن به تصویری به اسم Mann-E کار می‌کنی. می‌تونی یکم در موردش توضیح بدی و بگی چطور کار می‌کنه؟

مانی (که در بلاگم توضیح دادم یک جورایی بازی کردن با اسم مانی بوده، یک نام مردانه فارسی که البته اشاره‌ای هم به رهبر روحانی دوران ساسانی به همین نام – که نقاش هم بوده – داره) یک مدل Diffusion محسوب میشه. این به این معنیه که اول یک فضای مبهم (مثل برفک تلویزیون) درست می‌کنه و شروع می‌کنه به توسعه دادن اون تصویر که همزمان با مدلی مثل CLIP هم داره چک میشه که آیا درست داره پیش میره یا خیر. در نهایت هم تصویر تولید شده رو به کاربر نشان میده.

هدف اصلی توسعه مانی ساده‌ست، من نمی‌خوام مردم ایده‌ها و احساسات هنرمندانه‌شون رو در ذهنشون نگه دارند. ما در حال حاضر در دنیای «سیل اطلاعات» زندگی می‌کنیم. ذهن‌های ما هرلحظه با دنیایی از اطلاعات روبرو میشن و من باور دارم که داشتن ابزارهای هوش مصنوعی که کمکمون کنند تا افکار و ایده‌هامون رو در قالب عکس و نقاشی داشته باشیم، می‌تونه کمی به آرامشمان کمک کنه.

اگر دوست دارید بدونید چطور می‌تونید از مانی استفاده کنید، می‌تونید به گیتهاب من مراجعه کنید. یک دفترچه یادداشت جوپیتر اونجا هست که می‌تونه به Google Colab وارد بشه. حجم زیادی از کد هم از دید کاربر مخفی شده که حسی مشابه Midjourney یا Dall-E داشته باشه.

تو وبلاگت اشاره کردی که مدل بر مبنای Stable Diffusion ساخته شده. چه فناوری‌هایی برای این هوش مصنوعی استفاده کردی؟

این چیزیه که من بهش میگم «سوال مورد علاقه‌م». می‌تونم ساعت‌ها در مورد فناوری‌هایی که استفاده کردم، صحبت کنم. اول بذارید یک تاریخچه‌ای براتون بگم. وقتی اکثر تولیدکنندگان تصویر خوب «آزاد» نبودند (در مصاحبه گفتم free و ظاهرا یادم رفته مشخص کنم free as in freedom) تنها پایه و مبنای خوب برای یک تولیدکننده اثر هنری با کمک هوش مصنوعی VQGAN بود. یادمه که اگر نتایجش رو با CLIP ترکیب می‌کردی می‌تونست نتایج خوبی ارائه بده. در واقع این یک بازی انکودر-دیکودر بین دوتا مدل هوش مصنوعی بود.

ولی به قدر کافی خوشحال‌کننده نبود، مخصوصا این که midjourney در همون نسخه‌ها هم تصاویری تولید می‌کرد که انگار همین الان از ذهن یک هنرمند چیره‌دست بیرون آمده. پس من چه کردم؟ شخصا به این فکر بودم که چه اتفاقی می‌افتاد اگر یک نسخه متن‌باز از Midjourney داشتیم؟ و همزمان افرادی در شرکت Stability AI هم فکر مشابهی داشتند. وقتی انتشار Sable Diffusion رو اعلام کردند، من واقعا خوشحال شده بودم. کانسپت رو واقعا دوست داشتم با خودم گفتم که این به درد پروژه من هم میخوره! اینجا دقیقا جایی بود که من رفتم هرچی مقاله و تحقیق در مورد Stable Diffusion بود رو خوندم. این برای من یک دنیا ارزش داشت، چون بالاخره یک مدل تولید تصویر بسیار خوب داشت منتشر می‌شد.

این Stable Diffusion فناوری ابتدایی من بود. بی‌نهایت دوستش داشتم. همیشه تلاش می‌کردم بهترین نتایج رو ازش بگیرم. از prompt engineering صرف بگیر تا نوشتن کد‌هایی که بتونه برای من نتایج بهتری ازش بگیره. در ماه‌هایی که از انتشار نسخه اولیه‌ش گذشت، دو تا اتفاق خیلی بزرگ افتاد. اول این که Dream Booth برای Stable Diffusion ریلیز شد ( و صادقانه بخوام بگم، فاین تیون کردن Stable Diffusion رو به شدت ساده کرده) و همزمان RunwayML هم ورژن ۱.۵ از Stable Diffusion رو منتشر کرد. من مواد اولیه اصلی برای ساخت Midjourney متن‌باز رو داشتم!

بخوام خلاصه بگم: هسته اصلی Stable Diffusion ئه، از چک‌پوینت‌های نسخه ۱.۵ ای که runwayml ساخته استفاده کردم و تیون/ترین کردن با Dream Booth انجام شده. اینا Mann-E رو ممکن کردند. همچنین زبان‌های مورد استفاده هم باید بگم که عمدتا از پایتون استفاده کردم و کمی هم کد روبی برای توسعه وب نوشتم. و این تمام چیزیه که من استفاده کردم.

چه تفاوتی با Dall-E, Open Journey و باقی مدل‌ها داره؟

این سوال سختیه، بخصوص که در طول سال گذشته هزاران مدل با تکنیک‌های Textual Inversion و Dream Booth منتشر شدند. ولی اگر بخوام خلاصه بگم که چه فرقی با Dall-E داره، باید بگم که مانی به اون اندازه گرون نیست. برای استفاده از مانی، فقط کافیه که Google Colab رو راه‌ بندازید، نوت‌بوک رو واردش کنید و تمام! می‌تونید بی‌نهایت تصویر باهاش بسازید. این رو با Dall-E مقایسه کنید که به شما ۵۰ تا تصویر رایگان می‌ده و بعدش باید هزینه پرداخت کنید (که البته به نظرم مدل درآمدی بدی نیست).

ولی وقتی بحث به SD و Open Journey می‌رسه، باید بگم که من همیشه از بزرگترین طرفدارای این مدلا بودم و همیشه حس می‌کردم یه چیزی اونجا درست نیست (بخصوص با SD خام). برای این مدل‌ها، این که نتایج پرت و پلا و بی‌ربط تولید کنند چیز عجیبی نیست. پس چه کار می‌تونستم بکنم؟ حدس می‌زدم بهتره سعی کنم مدل‌های خوب رو با هم ترکیب کنم. الان می‌تونم مدعی بشم که مانی، در واقع یک هوش مصنوعی چندمدلی محسوب میشه که در حال حاضر توضیحش یکم سخته، ولی فکر کنم مقاله‌ای به زودی در موردش منتشر خواهم کرد.

اون مدل‌ها برای نقاشی، طراحی، هنر مفهومی، استایل آنالوگ، دابل اکسپوژر و … بودند. با یک چک‌پوینت و کمی prompt engineering الان می‌تونید نتایج بسیار خوبی از مدل دریافت کنید.

روی مدلی به نام Open Journey کار می‌کردی ولی اسمشو عوض کردی. می‌تونی کمی در موردش بگی؟

مانی اول کار، اسم مدل نبود؛ بلکه اسم استارتاپی بود که در تابستان ۲۰۲۲ برای همین کار راه انداخته بودم. اسم مدل Open Journey بود که اشاره به Open Source Midjourney داشت. بعدا، فهمیدم که یک نفر از تیم میدجرنی از تیم prompthero خواسته که اسم مدلشون (که فکر کنم چیزی مثل midjourney-v4-style-stable-diffusion یا چنین چیزی بود) رو عوض کنند و اون‌ها (یعنی prompthero) هم اسم مدل رو به OpenJourney تغییر دادند. من ازشون درخواست کردم که اسم مدل رو عوض کنند ولی از اونجایی که ترجیحم این بود که اون استارتاپ رو در اون برهه زمانی متوقف کنم، اسم مدل رو به مانی تغییر دادم.

و البته یک اتفاق خوشحال‌کننده هم افتاد. یک نفر لینک قدیمی به مدل من (که هنوز اسم رو Open Journey درج کرده بود) رو در هکرنیوز پست کرده بود و وبسایت من هم از لحاظ تعداد بازدیدکننده ترکید. من اون صفحه رو به صفحه درست، ری‌دایرکت کردم و فکر کنم این «ناخواسته‌ترین دیده‌شدن»ی بود که من می‌تونستم از یک پروژه متن‌باز بگیرم.

فکر می‌کنی آینده هوش مصنوعی چطوریه؟ حرف و حدیث در مورد موضوع خیلی زیاده و اکثرا ریشه در محصولات شرکت OpenAI مثل ChatGPT داره. اتفاق بعدی چیه؟

باور دارم که هوش مصنوعی آینده‌ست. برخلاف چیزی که سال ۲۰۲۱ اومد و یه فازی ساخت و رفت (و بله، منظورم متاورس زاکربرگه). هوش مصنوعی واقعی و آینده‌داره. من دارم به چشم می‌بینم که افراد زیادی از این ابزارها برای تولید پست‌های بلاگ، کپی‌رایتینگ، تولید شعار برای شرکت و استارتاپ، تولید آیکون و تصویر شاخص و حتی تولید کد استفاده می‌کنند. این خیلیه، بخصوص با وجود ابزارهایی مثل GPT-3 یا ChatGPT حتی می‌تونه رایج‌تر هم بشه. از طرف دیگر قضیه هم که بخواهیم نگاه کنیم، ابزارهای متن‌بازی مثل BLOOM, BLOOMZ, Flan-T5, GPT-Neo و … رو داریم. افراد می‌تونند این مدل‌ها و API رو متناسب با نیازهای خودشون، تغییر بدند.

و باور دارم که ابزارهای هوش مصنوعی ما را به جهانی هل می‌دهند که مردم در آن هوشمندانه‌تر کار می‌کنند، نه سخت‌تر. می‌دونی، تو می‌تونی شونزده ساعت از بیست و چهار ساعت شبانه روز رو صرف توسعه یه کمپوننت تو پروژه ری‌اکتیت کنی، درسته؟ این خیلی خوبه که شغلت و کاری که می‌کنی رو دوست داره ولی حدس من اینه که این ماجرا برای کارفرما یا سرمایه‌گذار هیچ اهمیتی نداره، بخصوص وقتی می‌فهمن که با ۱۶ دقیقه prompt engineering می‌تونستی همون نتیجه رو از GPT-3 با کمی ویرایش کد بگیری. برای من، این یک دنیای بهتره.

در پایان هم از تو، الکساندر؛ تشکر می‌کنم که اومدی سراغم.

سخن آخر

سالها پیش دوستانی در وبسایت لینوکس سیزن با من مصاحبه‌ای انجام دادند که از اینجا در دسترسه. اما خب این یکی مصاحبه، برای من پراهمیت‌تر بود، چرا که فکر کنم تنها کسی هستم که در ایران، با جدیت روی پروژه‌های Generative AI (هوش مصنوعی مولد) به صورت آزاد/متن‌باز کار می‌کنه و خب حیف بود که الان که موقعشه، منتشرش نکنم.

خلاصه که ازتون ممنونم بابت وقتی که گذاشتید و خوندید. اگر به چنین مطالبی علاقمندید، می‌تونید من رو در ویرگول هم دنبال کنید و اونجا هم مطالب مشابهی رو مطالعه کنید. ممنونم بابت وقتی که گذاشتید و خوندید.

Share